European approach to balancing markets – spotlight on Germany

Brussels
10 June 2010

Stephan Spiecker
Christoph Weber
General alternatives for interaction between grids and markets

- **ISO model**
 - System operator is responsible for market and grid
 - Mandatory Power pool
 - System optimization by ISO covering both power plants and grid usage
 - Frequently used in the **US markets**, most well-known example: PJM

- **Power exchange model**
 - Separated responsibilities: grid operators and power exchanges
 - Trading both bilaterally and through Power Exchange
 - Decentralized optimization by market participants
 - Grid operation based on submitted schedules and management of deviations
 - Nowadays used in all liberalized **European markets**
Trading possibilities in German power market

- **End of month -1**
- **Day-ahead 8:00h**
- **Day-ahead 12:00h**
- **Delivery of regulating services**

Future & Forward market
Short-term (OTC) Forward market
Spot Trading
Intraday Trading
Ex-post- Trading
Delivery of balancing energy
Needs for Balancing Energy

New Information on / Changes in

- Load
- Wind
- Conventional Generator Outages
Assessment of Balancing Energy Needs

• **Day-ahead load forecast**
 – About 2 % forecast error
 – i.e. for Germany about 1200 MW MAE (Mean absolute error)

• **Plant outages**
 – About 25 per plant and year, 10 h per outage on average
 – i.e. for Germany about 1700 MW MAE (Mean absolute error)

• **Wind forecast**
 – 4 % RMSE of 25,800 MW
 – Own analysis 750 MW MAE for total German generation

→ euclidean sum yields 2250 MW corresponding to about 20 TWh
Intraday market characteristics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>EPEXSPOT</td>
<td>75’ before delivery</td>
<td>1.02 TWh</td>
<td>0.2 %</td>
</tr>
<tr>
<td>Germany</td>
<td>EPEXSPOT</td>
<td>75’ before delivery</td>
<td>5.66 TWh</td>
<td>1.1 %</td>
</tr>
<tr>
<td></td>
<td>IntradayS</td>
<td>Even ex-post trades</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>Nordic Countries</td>
<td>Nordpool</td>
<td>60‘ before delivery</td>
<td>1.82 TWh (2008)</td>
<td>0.5 %</td>
</tr>
<tr>
<td>Spain</td>
<td>OMEL</td>
<td>6 auctions per day</td>
<td>31.34 TWh</td>
<td>12.1 %</td>
</tr>
</tbody>
</table>
Intraday EEX – prices and volume

Preis

€/MWh

07.04.08 14.07.08 20.10.08 26.01.09 04.05.09 10.08.09 16.11.09 22.02.10

Volumen

MWh

07.04.08 14.07.08 20.10.08 26.01.09 04.05.09 10.08.09 16.11.09 22.02.10

Gesamt: 11.678.490 MWh
Why is liquidity much lower than expected?

- Large player are doing internal netting
- Downwards spiral of limited liquidity
- Market design – continuous trading
- Competition with regulation power market in the case of Nordpool
Reserve power – technical characteristics

http://www.amprion.net/en/control-energy
Reserve power – market characteristics

<table>
<thead>
<tr>
<th></th>
<th>Primary control</th>
<th>Secondary control</th>
<th>Minute reserve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auction design</td>
<td></td>
<td>One-sided auction (monopsony of TSOs)</td>
<td></td>
</tr>
<tr>
<td>Auction frequency</td>
<td>Monthly</td>
<td>Monthly</td>
<td>Daily</td>
</tr>
<tr>
<td>Auction volume</td>
<td>623 MW</td>
<td>~ 2300 MW (positive)</td>
<td>~ 2300 MW (positive)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>~ 2000 MW (negative)</td>
<td>~ 2450 MW (negative)</td>
</tr>
<tr>
<td>Purchased/delivered energy</td>
<td></td>
<td>1.3 TWh (positive)</td>
<td>0.2 TWh (positive)</td>
</tr>
<tr>
<td>(2009)</td>
<td></td>
<td>2 TWh (negative)</td>
<td>1 TWh (negative)</td>
</tr>
</tbody>
</table>
Advantages and Disadvantages of the Power Exchange Model

Cons

• Market operation does not fully reflect technical constraints
 – Nodal pricing hardly possible
• Coordination efforts between power exchanges and grid operators necessary
• Lower liquidity in the power market
• Decentralised optimization may result in inefficient resource use

Pros

• Decentralised optimisation provides opportunities for innovations
• Market incentives to avoid inefficient market designs
• Larger market zones less prone to exercise of market power
• Derivative markets easier to establish
• Market prices more easily provide right incentives for investment in generation
Thank you!