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Abstract

This paper proposes a novel instrumental variable to estimate the causal impact of law enforcement on 
deforestation. DETER, a satellite-based system for mapping land cover, is the key tool in Amazon monitoring. 
It determines the location of recent forest clearings and is used to target enforcement. Because DETER cannot 
detect land cover patterns beneath clouds, it detects no clearings in covered areas. Results conrm that DETER 
cloud coverage is systematically correlated with nes, a proxy for the presence of law enforcers. The study 
explores this exogenous source of variation in the allocation of law enforcers as an instrument for the intensity 
of enforcement. Stricter law enforcement eectively deterred Amazon deforestation, helping avoid over 22,000 
km2 of cleared forest area per sample year. Leakage of criminal activity into neighboring areas does not appear 
to have occurred. Results are submitted to a series of robustness checks.
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1. Introduction

The economics of law enforcement and crime have garnered much attention since the

seminal work of Becker (1968). Understanding how o�enders respond to law

enforcement in practice is crucial for the design of more e�ective interventions to

counter illegal behavior. Yet, because the relationship between law enforcement and

crime is characterized by strong endogeneity, documenting its causal e�ect is a very

challenging task (Cameron, 1988; Levitt, 1997; Tella and Schargrodsky, 2004; Draca

et al., 2011). The matter is no less complex when it concerns environmental crimes. If

anything, the importance of better understanding the e�ectiveness of law enforcement is

heightened when dealing with illegal behavior that carries externalities at the global

level � precisely the case of environmental infractions that increase greenhouse gas

emissions, the main driving force behind climate change. Because emissions are not

constrained by geopolitical borders, they will always imply in global externalities

(Stern, 2008; Greenstone and Jack, 2015). The IPCC (2007) estimates that, in the

mid-2000s, almost a �fth of global emissions originated from the forestry sector, mostly

from tropical deforestation. Combating deforestation and conserving tropical forests

have therefore become priorities in the global policy agenda (Burgess et al., 2012). The

matter is aggravated by the fact that forest clearings in recent decades have largely

been made under illegal circumstances, and often classify as criminal behavior. A wide

range of environmental law enforcement instruments are currently available to protect

the forest, but in-depth and evidence-based understanding of these instruments' e�cacy

is still scant.

This article proposes a novel instrumental variable approach that enables the

estimation of the causal impact of environmental monitoring and law enforcement on

tropical forest clearings in the Brazilian Amazon. Brazil is a central �gure in the global

tropical deforestation story. The country originally held two thirds of the Amazon,

totaling over 4 million square kilometers of native Amazon vegetation � an area

equivalent to almost half of continental Europe. Extensive forest clearings in the

Brazilian Amazon were responsible for a substantial share of the observed loss of

tropical vegetation worldwide through the beginning of the 21st century (Hansen and

DeFries, 2004; Hansen et al., 2008). Yet, after peaking at 27,000 square kilometers per

year in 2004, Brazilian Amazon clearing rates fell sharply in the second half of the

decade to about 6,000 square kilometers in the early 2010s (INPE, 2013b). Our study

assesses the contribution of policy-induced stricter environmental monitoring and law

enforcement to this recent Brazilian Amazon deforestation slowdown.

In 2004, the Brazilian federal government launched an action plan to combat Amazon

deforestation. One of the plan's key components was the introduction of new procedures

for monitoring forest clearing activity, with the implementation of the Real-Time System
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for Detection of Deforestation (DETER) as its cornerstone. DETER is a satellite-based

system that provides near real-time identi�cation of deforestation hot spots throughout

the full extent of the Brazilian Amazon. Hot spots map into alerts signaling areas in

need of immediate attention, which then serve as the basis for targeting law enforcement

e�orts. Since the adoption of DETER, the allocation of environmental law enforcement

personnel in the Brazilian Amazon has relied heavily on these alerts. The new remote

sensing system thus enabled law enforcers to better identify, more closely monitor, and

more quickly act upon areas being illegally deforested. This represented a substantial

leap in environmental sanctioning capacity. Brazil's institutional setup is such that law

enforcers can more easily punish o�enders for illegal forest clearings when catching them

red-handed, as o�enders can thereby be held directly accountable for the crime. Although

Brazilian environmental legislation allows for punishment of past deforestation, e�ective

sanctioning of past clearings in the Amazon, where land and production property rights

are unclear, is far less feasible.

Was more stringent environmental law enforcement e�ective in containing tropical

forest clearings? To accurately answer this question, we must tackle the aforementioned

law enforcement and crime endogeneity problem. In our context, the problem can be

stated as follows: because the allocation of law enforcers typically targets areas under

greater risk of deforestation, the correlation between the presence of law enforcers and

forest clearings is jointly determined by the potentially deterrent e�ect of environmental

law enforcement and the crime-based targeting strategy. Estimation of the causal e�ect

of monitoring and law enforcement on deforestation therefore hinges on successfully

disentangling the impact of these two determinants.

The police and crime literature documents di�erent e�orts to identify and explore

exogenous sources of variation in police presence and thereby isolate the causal e�ect of

law enforcement. When data on the actual intensity of law enforcement is not available,

indirect inference has been used to argue that speci�c terrorist attacks increased local

patrolling and thereby reduced crime � see Tella and Schargrodsky (2004) for an

assessment of attacks in Buenos Aires, Argentina, and Klick and Tabarrok (2005) for

evidence based on terror alerts levels in Washington, D.C., US. In contexts where data

on police deployment (or a proxy thereof) exist, the relationship of interest can be

estimated upon availability of a plausible instrument. Using electoral cycles, which the

author shows are correlated with police force sta�ng in the context of US elections, as

one such instrument, Levitt (1997) provides evidence that increase police presence

reduces crime.1 Draca et al. (2011) explores regional increases in police deployment

induced by terrorist attacks in London to uncover a reduction in crime rates during

1See McCrary (2002) for concerns regarding data and method validity in the well-known Levitt (1997)
study, and Levitt (2002) for a response.
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periods of more intense policing.

Our analysis draws on this literature, using an exogenous source of variation in the

allocation of environmental law enforcers to capture the impact of monitoring and law

enforcement on Amazon deforestation. We exploit a technical characteristic of the

DETER monitoring system to derive an instrument for the local intensity of law

enforcement. Our core argument is as follows. Because the satellite used in DETER is

incapable of detecting land cover patterns in areas covered by clouds, no forest clearing

activity is identi�ed in these areas, such that no alerts pinpointing the location of recent

deforestation activity are issued for the region covered by clouds. Thus, law enforcers

have a lower probability of being allocated to these areas. We therefore propose using

DETER cloud coverage as an instrument for the local intensity of law enforcement.

Based on a 2006 through 2011 panel of 526 municipalities in the Brazilian Amazon,

we show that cloud coverage limiting satellite visibility in the DETER monitoring

system does, in fact, systematically a�ect the intensity of law enforcement in the

Brazilian Amazon � for a given municipality, greater average annual cloud coverage

reduces the number of �ora-related environmental �nes issued in that municipality.2 We

control for municipality and year �xed e�ects and data on relevant observables,

including rainfall and temperature, which are expected to be correlated with both

deforestation and cloud coverage. In the second stage of our estimation, we �nd

evidence that the presence of law enforcers e�ectively deters Amazon deforestation �

an increase in the number of �nes issued in a given year is found to signi�cantly reduce

forest clearings the following year.

Our inference is robust to weak instruments and passes a series of robustness tests.

Results are shown to not have been driven by our choice of instrument, as they remain

stable when using an alternative instrument that is arguably less vulnerable to potential

correlation with our dependent variable. Coe�cients are also robust to the inclusion

of a variety of time trends that test for relevant potential baseline di�erences across

municipalities that could set them on di�erent forest clearing trends over time. These

include varying stocks of deforested areas, di�erent economic dynamics and deforestation

pressures, and shifts in the distribution of law enforcement at baseline. Finally, the

deterrent e�ect of law enforcement is also robust to sample composition changes, inclusion

of relevant controls, and alternative data sets for climate variables.

Estimated e�ects are not only statistically signi�cant, but also quantitatively relevant.

In a counterfactual exercise, we estimate that, had it not been for monitoring and law

enforcement e�orts, total deforested area would have been more than 360% greater than

2Flora-related environmental �nes issued at the municipality level serve as a proxy for the local intensity
of law enforcement, since sanctions for illegal forest clearing are not restricted to, but usually include,
�nes.
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was actually observed from 2007 through 2011. During this period, law enforcement

helped avoid an average of over 22,000 square kilometers of Amazon forest clearings

per year. We use these empirical �ndings to perform a back-of-the-envelope cost-bene�t

analysis, comparing a conservative (upward biased) estimate of the annual cost of Amazon

monitoring and law enforcement with an also conservative (downward biased) estimate

of the annual monetary bene�ts of preserving the forest and thereby avoiding carbon

dioxide emissions. We calculate a break-even price of carbon in this conservative exercise

to be 0.84 USD/tCO2. Compared to the price of 5.00 USD/tCO2 commonly used in

current applications, these �gures suggest that active monitoring and law enforcement

in the Brazilian Amazon have the potential to yield signi�cant net gains. To address

another potential cost dimension of stricter monitoring, we investigate whether increased

intensity of law enforcement had adverse e�ects on local agricultural production. We �nd

no signi�cant immediate impact on municipality-level agricultural GDP. Unfortunately,

our empirical setup neither allows us to identify the mechanisms behind this result, nor

does it capture long-term and informal production impacts of stricter law enforcement.

The analysis also explores potential leakage of deforestation into neighboring areas,

but �nds no evidence to support displacement of forest clearing activity from localities

subject to stricter law enforcement into their immediate surroundings.3 In fact, the

impact of stricter law enforcement in a given municipality is even greater when

deforestation in neighboring areas is taken into account. The absence of within-Amazon

leakage is to be expected when one considers that the satellite-based monitoring system

indiscriminately covers the full extent of the Brazilian Amazon � potential o�enders

are as exposed to the satellite in a given locality as they are in that locality's

surroundings. We therefore argue that monitoring and law enforcement e�ectively

contributed to contain total Amazon deforestation.

This paper speaks to di�erent strands of the economic literature. First, as has been

mentioned, it is closely related to existing e�orts to establish the causal impact of law

enforcement on illegal activity. Yet, unlike previous works (Tella and Schargrodsky, 2004;

Klick and Tabarrok, 2005; Draca et al., 2011), our empirical circumstances allow us to

assess law enforcement e�orts that cover the full extent of the area that is subject to the

illegal activity. It is therefore not as context-speci�c, which ultimately allows us to draw

conclusions about the e�ectiveness of law enforcement as a deterrent of crime within the

full scope of interest without having to resort to additional assumptions or extrapolations.

Second, it contributes to a growing literature on the enforcement of environmental

regulation in developing countries. Such regulation has long been assessed � both in

3Note that, due to data availability, we are only able to capture deforestation of tropical vegetation. Thus,
we cannot test if increased Amazon monitoring contributed to displace forest clearing into non-tropical
vegetation within Brazilian territory.
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terms of policy e�ectiveness in meeting its goals and policy impacts on socioeconomic

outcomes � but almost exclusively within the context of developed nations.4 However,

as argued by Greenstone and Hanna (2014), considering that developing countries

typically exhibit a weaker institutional environment that poses obstacles to e�ective

environmental law enforcement, one cannot usually extend empirical �ndings from

developed countries to developing ones.5 Yet, as the authors further argue, it is

precisely developing countries that most urgently need to successfully enact and enforce

environmental policies, since most of the increase in greenhouse gas emissions over the

coming decades is projected to originate in such countries.6 With the bulk of research

on climate change and policy focused on developed economies, little is actually known

about e�ects and workings of climate policy where it currently matters most (Burke

et al., 2016). Our work directly assesses an environmental policy that was enacted in

and is entirely enforced by a developing country with large potential to contribute to

global greenhouse gas emissions reductions.

Third, there is a substantial stream of literature documenting both underlying and

immediate causes of tropical deforestation, including agricultural commodity prices,

infrastructure, transportation costs, population pressures, climate-related phenomena,

and rent-extracting incentives at the local politician/bureaucrat level.7 More recently,

works have started to look speci�cally at the mid-2000s Amazon deforestation

slowdown, seeking to identify its main drivers. Evidence suggests that novel

conservation policies implemented within the scope of the mid-2000s Brazilian action

plan to combat tropical forest clearings signi�cantly contributed to curb deforestation in

the Brazilian Amazon.8 However, none have directly measured the impact of

environmental monitoring and law enforcement, despite its central role in the action

plan.9 To the best of our knowledge, ours is the �rst assessment of environmental

monitoring and law enforcement in the context of the Brazilian Amazon that

adequately addresses known endogeneity between the illegal activity and the presence of

4A series of pieces on the U.S. Clean Air Act Amendments, for example, has documented impacts on air
pollution levels, infant mortality, housing prices, and �rm-level productivity and growth (Greenstone,
2002; Chay and Greenstone, 2003, 2005; Greenstone et al., 2012). See, also, Gray and Shimshack (2011)
for a recent survey on empirical evidence concerning pollution monitoring and law enforcement in the
U.S.

5Greenstone and Hanna (2014) provide one of the few assessments of environmental regulation in a
developing country, �nding evidence that, despite the weak regulatory environment, policies aimed at
improving air and water quality in India achieved varying degrees of success.

6Broner et al. (2013) �nd evidence that countries with laxer environmental regulations actually provide
a source of comparative advantage to polluting industries. This aggravates their own environmental
quality, of course, but also exposes other nations to environmental degradation via externalities.

7See, among others: Angelsen and Kaimowitz (1999); Pfa� (1999); Chomitz and Thomas (2003); Burgess
et al. (2012); Souza-Rodrigues (2015).

8See: Assunção and Rocha (2014); Assunção et al. (2015, 2016); Burgess et al. (2016).
9Hargrave and Kis-Katos (2013) �nd a negative relationship between �ne intensity and deforestation in
the Brazilian Amazon, but do not account for endogeneity issues.
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law enforcers. It therefore contributes not only to the police and crime literature, but

also serves as one of the few studies that performs policy e�ectiveness analysis in the

context of the recent Brazilian Amazon deforestation slowdown.

The remainder of this paper is organized as follows. Section 2 describes the

institutional context regarding Amazon monitoring and law enforcement in Brazil.

Section 3 details the empirical strategy used to identify the causal e�ect of law

enforcement on deforestation. Section 4 introduces the data and descriptive statistics.

Section 5 presents and discusses results. Section 6 provides robustness checks. Section 7

explores potential costs and collateral e�ects of the policy. Section 8 concludes with

policy implications.

2. Institutional Context

2.1. Deforestation as a Crime

In Brazil, unlicensed clearing of native vegetation is an illegal activity punishable by

law. Although licenses for legal deforestation, including in the Amazon, can be obtained,

the vast majority of clearings during our period of interest were performed under illegal

circumstances.

Since its creation in 1989, the Brazilian Institute for the Environment and Renewable

Natural Resources (Ibama) has been responsible for environmental monitoring and law

enforcement in Brazil. Ibama is an executive branch of the Brazilian Ministry of the

Environment. It executes environmental policy actions and operates as the national

police authority in both the investigation and sanctioning of environmental infractions.

As the country's leading force in environmental law enforcement, Ibama plays a large and

central role in the control and prevention of Amazon deforestation.

2.2. Novel Conservation Policy and Satellite Monitoring

Launched in 2004, the Action Plan for the Prevention and Control of Deforestation

in the Legal Amazon (PPCDAm) inaugurated a novel approach towards combating

tropical deforestation in Brazil. The plan inaugurated integrated actions across di�erent

government institutions and proposed new procedures for monitoring, environmental

control, and territorial management. The strengthening of monitoring and law

enforcement was a fundamental part of the PPCDAm's tactical-operational strategy. It

was implemented via a combination of technological changes and legal actions.

From a technological standpoint, the cornerstone of PPCDAm law enforcement was

the major leap forward in Amazon monitoring capacity brought about by the adoption

of high-frequency remote sensing of forest clearing activity. Developed by the Brazilian

Institute for Space Research (INPE), the Real-Time System for Detection of Deforestation

(DETER) is a satellite-based system that processes georeferenced imagery on Brazilian
7



Amazon land cover on a regular basis to detect loss of forest area. Figure 1 shows how

DETER captures deforestation. The system di�erentiates forested and deforested areas

(shown in di�erent colors in the �gure), such that, for any given location, later satellite

images are compared with earlier ones to identify changes in forest cover. The images

are prepared and distributed in the form of georeferenced digital maps, pinpointing the

location (geographical coordinates) of deforestation hot spots. Figure 2 provides examples

of such maps. Each clearing hot spot triggers the issuing of a DETER deforestation alert,

signaling areas in need of immediate attention.

[Figure 1 about here.]

However, the system su�ers from an important technical limitation: DETER cannot

detect land cover patterns beneath clouds. In fact, most satellite-based systems cannot

� when clouds are present, satellite images are essentially pictures of the clouds

themselves, not the land beneath them. So if an area is deforested but is covered by

clouds, DETER can only capture the change in forest cover and, consequently, issue an

associated deforestation alert once cloud coverage clears. The pattern is apparent in

Figure 2, which shows that deforestation alerts are only located in uncovered areas.

This characteristic poses a relevant limitation for monitoring capacity, but it is the basis

upon which we build our empirical strategy (see Section 3 for details).

[Figure 2 about here.]

Since its implementation in the mid-2000s, DETER has served as the main tool for

targeting Ibama's law enforcement e�orts in the Amazon. Prior to the activation of

the remote sensing system, identi�cation of recent forest clearing activity depended on

voluntary and anonymous reports of threatened areas. This made it extremely di�cult for

Ibama to locate and access deforestation hot spots in a timely manner. With the adoption

of DETER, Ibama was given regular and high-frequency access to georeferenced data on

forest clearing activity, and was thus able to better identify and more quickly act upon

areas a�icted by illegal deforestation.10

From a legal standpoint, the PPCDAm also promoted institutional changes that

enhanced law enforcement capabilities in the Amazon. Ibama sought to improve the

quali�cation of its personnel through the establishment of stricter requirements in its

recruitment process and more intensive training of law enforcers. Additionally, Ibama's

10More speci�cally, the satellite used in DETER provides daily observations for the full extent of the
Brazilian Amazon. During our sample period, the best daily images (those with best visibility of
land cover) for each area were aggregated into biweekly maps and sent to Ibama. Since 2011, INPE
has processed daily images on a daily basis, such that Ibama receives updated information on recent
deforestation activity every weekday.
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law enforcement e�orts gained greater legal support with the passing of Presidential

Decree 6,514 in 2008, which reestablished directives for the investigation and

sanctioning of environmental infractions. The decree determined the administrative

processes for punishing o�enders in more detail than had been previously incorporated

in legislation, increasing both clarity and speed of such processes. It also regulated the

use of both existing and new instruments for the punishment of environmental crimes,

including �nes, embargoes, and seizure and destruction of production goods, tools, and

materials. Last, but not least, the decree established the public release of a list

identifying landowners of areas under embargo. These measures not only increased the

robustness of sanctions and the safety of law enforcement agents, but also brought

greater regulatory stability to the administrative processes for the investigation and

punishment of environmental crimes.

Given Brazil's institutional setup, law enforcers have greater capacity to punish

o�enders for illegally clearing forest areas when caught red-handed. This is particularly

relevant for a subset of sanctioning instruments � namely the establishment of

embargoes and seizure of production goods, tools, and material � whose use essentially

depends on law enforcers having access to seizable items and being able to identify and

hold the o�ender accountable for the illegal activity. Although Brazilian environmental

legislation allows for punishment of past deforestation, once an area has been cleared, it

becomes a small part of the enormous contingent of illegally cleared land in Brazil.

E�ective punishment of illegal deforestation in such areas, where land and production

property rights are unclear, has proven to be considerably less feasible. The adoption of

satellite-based monitoring and targeting of law enforcement signi�cantly increased law

enforcers' capacity to identify and reach forest clearings as the environmental crimes

happen, thereby also increasing their ability to punish illegal deforestation. Thus,

overall, policy e�orts adopted starting in the mid-2000s improved, intensi�ed, and more

accurately targeted monitoring and law enforcement e�orts in the Brazilian Amazon.

2.3. Other Relevant Policies

Several other policies to combat deforestation were implemented within the scope of

the PPCDAm. Two such policies are relevant for consideration in our empirical

strategy: the creation of priority municipalities and the expansion and strategic

allocation of protected areas.

The signing of Presidential Decree 6,321 in late 2007 established the legal basis for

singling out municipalities with intense deforestation activity and taking di�erentiated

action towards them. These municipalities, selected based on their recent deforestation

history, were classi�ed as in need of priority action to prevent, monitor, and combat

illegal deforestation. Exiting the list of priority municipalities was conditioned upon

signi�cantly reducing deforestation. In addition to concentrating a large share of
9



Ibama's attention and monitoring e�orts, priority municipalities became subject to a

series of other administrative measures that did not necessarily stem from law

enforcement policy. Examples include harsher licensing and georeferencing requirements

for private landholdings, revision of land titles, and economic sanctions applied by

agents of the commodity industry. In light of this, the consequences of being added to

the list of priority municipalities could therefore extend beyond that of stricter

monitoring and law enforcement.

The PPCDAm also promoted the expansion of protected territory and introduced the

strategic allocation of protected areas, such that new areas served as shields to advancing

deforestation.11 Thus, starting in the mid-2000s, newly protected territory was often in

very close proximity to areas recently a�ected by deforestation.

3. Empirical Strategy

Our relationship of interest � how law enforcement a�ects illegal tropical forest

clearing � su�ers from known endogeneity. The presence of law enforcers is expected to

have a deterrent e�ect on illegal deforestation, but law enforcement personnel are

allocated, at least partly, based on the actual occurrence of environmental crimes. As

we only observe an equilibrium situation � the sanction applied by Ibama once the

environmental infraction has been committed � our estimation must tackle

simultaneity in addition to the usual concerns regarding omitted variables. This section

builds the case for and proposes an instrumental variable strategy to identify the causal

e�ect of law enforcers' presence on Amazon deforestation.

Recall from Section 2 that, because DETER is unable to detect land cover patterns

beneath clouds, it does not issue alerts for any given area when cloud coverage is limiting

visibility in that area. Since these alerts serve as the basis for targeting Amazon law

enforcement e�orts, law enforcers are less likely to be allocated to areas that are covered

by clouds during remote sensing, even if forest clearing activity is occurring in these

areas. In this sense, the presence of environmental law enforcers will be at least partially

determined by an area's cloud coverage. If this is, in fact, the case � and we will

provide empirical evidence that supports it � average annual DETER cloud coverage at

the municipality level is arguably a source of exogenous variation in the presence of law

enforcers in Amazon municipalities. We therefore propose using DETER cloud coverage

as an instrument for environmental law enforcement intensity.

Our instrument's validity depends on it being uncorrelated with the error term in

the equation that regresses deforestation on law enforcement, conditional on all

11These areas are protected to the extent that illegal activities conducted within them are subject to
stricter sanctions.
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observable variables. There are two scenarios in which this condition could be violated

in our empirical setup: (i) if there is correlation between cloud coverage and other

geographical characteristics that, in turn, are correlated with deforestation; and (ii) if

there is correlation between DETER cloud coverage and our measure of deforestation

(dependent variable), which is also a�ected by cloud coverage. The availability of

relevant observable variables and the use of �xed e�ects help make the case for the

instrument's validity.

Rainfall and temperature present themselves as obvious candidates in the �rst

scenario. Both are expected to be correlated with clouds via weather phenomena. They

may also be correlated with deforestation, be it as direct or indirect determinants of

agents' forest clearing decisions, or through weather impacts of deforestation itself.12

Although delving into the nature of this correlation is out of the scope of this paper, we

account for it by using precipitation and temperature data compiled by Matsuura and

Willmott (2015) to control for weather at the municipality level.13 Another source of

concern regarding our instrument's exclusion restriction is the potential relationship

between average cloud coverage and soil type. The quality of soil in a given area could

be correlated with deforestation through its impact on production outcomes, which

a�ect agents' forest clearing decisions. However, because soil types change relatively

slowly over time, this concern can be mitigated by the inclusion of location �xed e�ects

in studies with relatively short time windows like our own (5 years). All our

speci�cations therefore include municipality-level precipitation and temperature

controls, as well as municipality �xed e�ects.

We also address the second scenario using available observable data. INPE's Project

for Monitoring Deforestation in the Legal Amazon (PRODES) calculates annual forest

clearing rates for the Brazilian Amazon based on interpretation of satellite imagery. It is

similar to DETER in the sense that changes in forest cover are detected by comparing

earlier images of a given area with later images of that same area, though it uses a

di�erent satellite that provides imagery at higher resolutions, but at far less frequent

intervals. Although the systems use di�erent satellites and span across di�erent time

frames (see Section 4 for details), both cover the same geographic area and both cannot

detect land cover patterns beneath clouds. We therefore expect correlation between

DETER and PRODES cloud coverages to be potentially relevant and control for PRODES

cloud coverage in all speci�cations, such that coe�cients are estimated considering only

DETER cloud coverage that is orthogonal to that in PRODES.14 In robustness checks, we

further explore the fact that PRODES collects satellite imagery only within a restricted

12See Section 4 for a brief discussion on the matter.
13Section 6 discusses robustness checks that explore alternative datasets for climate variables.
14Shadows cast by clouds and smoke from forest �res have the same e�ect as clouds on PRODES
imagery, obstructing land cover patterns from view. In PRODES data, such �non-observable areas�
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window in a given year, while DETER collects daily satellite imagery all year round.

We replace our original instrument with a measure of average DETER cloud coverage

that excludes data from the PRODES period of remote sensing. Speci�cations using this

alternative instrument also include PRODES cloud coverage as a control.

Having controlled for municipality-level precipitation, temperature, PRODES cloud

coverage and non-observable areas, and �xed e�ects, we argue that the only remaining

channel through which DETER cloud coverage could be correlated with deforestation

in the Brazilian Amazon is that of the allocation of environmental law enforcers. We

start by exploring this potential relationship between law enforcement and DETER cloud

coverage. Our OLS estimation equation is given by:

Finesit =β1DETERcloudsit +
∑
k

βkXkit + αi + φt + εit (1)

where Finesit is the number of �ora-related environmental �nes issued by Ibama in

municipality i and year t, which serves as proxy for the presence of law enforcers;

DETERcloudsit is average annual DETER cloud coverage for municipality i and year t;

Xit is a vector of municipality-level controls including precipitation, temperature, and

PRODES cloud coverage and non-observable areas; αi is the municipality �xed e�ect; φt

is the year �xed e�ect; and εit is the idiosyncratic error.

In our instrumental variable estimation, we intend to capture the impact of law

enforcement (instrumented by DETER cloud coverage) on Amazon deforestation. We

follow the literature on monitoring and law enforcement assessment and, based on the

expected timing of the criminal response, explore the impact of lagged law enforcement

variables on current illegal activity (Magat and Viscusi, 1990; Levitt, 1997; Shimshack

and Ward, 2005). A one-year response window seems plausible in the context of

DETER-based monitoring and annual data. For a given area, increased deforestation in

year t likely triggers the issuing of DETER deforestation alerts associated with that

area, thereby increasing the presence of law enforcement personnel via targeted

allocation in the same year t. If potential o�enders perceive the observed greater

intensity of law enforcement in year t as a higher probability of getting caught and

sanctioned in year t + 1, they may choose to not (re)engage in criminal activity the

following year, consequently contributing to reduce forest clearings in t+ 1.

Hence, we estimate the e�ect of the number of �ora-related �nes issued in year t− 1

(instrumented by DETER cloud coverage in year t − 1) on deforestation in year t. As

we intend to capture DETER cloud coverage that is correlated with the allocation of

law enforcers, but uncorrelated with deforestation through all other channels, we include

are distinguished from clouds; DETER makes no such distinction. We include both PRODES clouds
and non-observable areas as controls.
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one-year lags for precipitation and temperature controls, but not for any other variables.

The second-stage estimation equation is given by:

Deforestationit =γ1Finesit−1 +
∑
k

γkXkit + ψi + λt + ξit (2)

where Deforestationit is the normalized deforestation increment in municipality i and

year t; Finesit−1 is the number of �ora-related environmental �nes issued by Ibama in

municipality i and year t− 1, and is instrumented by DETERcloudsit−1; Xit is a vector

of municipality-level controls including lagged values for precipitation and temperature,

as well as current PRODES cloud coverage and non-observable areas; ψi is the

municipality �xed e�ect; λt is the year �xed e�ect; and ξit is the idiosyncratic error.

Standard errors in all speci�cations are clustered at the municipality level, making them

robust to heteroscedasticity and serial correlation (Bertrand et al., 2004).

In addition to variables added to support the validity of our exclusion restriction,

Xit also includes other relevant controls to mitigate omitted variable bias. First,

because agricultural commodity prices have been shown to be relevant drivers of

tropical deforestation (Angelsen and Kaimowitz, 1999; Hargrave and Kis-Katos, 2013;

Assunção et al., 2015), we control for crop and cattle prices. Drawing on Assunção

et al. (2015), we include output prices for the �rst and second semesters of the previous

year, as well as for the �rst semester of the current year. Second, there are important

municipality and time characteristics that could determine both forest clearing activity

and law enforcement e�orts. We take advantage of our data set's panel structure to

control for municipality and year �xed e�ects and thereby address such characteristics.

Finally, we recognize that there were relevant conservation policy e�orts � namely the

creation of priority municipalities and the strategic allocation of newly protected

territory � being implemented alongside improvements in monitoring and law

enforcement. Although we expect these policies to have had an impact on Amazon

deforestation, endogeneity concerns keep us from including available data on them in

our preferred speci�cation.15 In robustness checks, we include controls for priority

municipalities and percentage of municipal area under protection.

15Priority municipality status, which focused monitoring and law enforcement, was granted based on
recent deforestation history. Also, within the scope of the PPCDAm, the allocation of newly created
protected areas was partially based on recent deforestation occurrence and trends, since these areas
were used as bu�ers against advancing deforestation. See Section 2 for details.
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4. Data

Our empirical analysis is based on a 2006 through 2011 municipality-by-year panel

data set entirely built from publicly available data.16 There are 553 municipalities

located partially or entirely within the Amazon Biome.17 Missing data for 6

municipalities imposes a �rst sample restriction. It is further restricted to municipalities

that portray variation in forest cover during the sample period to allow for the

normalization of our main deforestation variable (see Section 4.1 for variable

construction) and for the use of municipality �xed e�ects.18 The �nal sample comprises

526 municipalities.

4.1. Deforestation

Since 1988, INPE annually processes satellite imagery to identify and map deforested

land through its Project for Monitoring Deforestation in the Legal Amazon (PRODES).

INPE uses images from Landsat class satellites with a spatial resolution of 20 to 30 meters,

allowing it to detect contiguously cleared areas of at least 6.25 hectares throughout the

full extent of the Brazilian Legal Amazon. It compares images of a given area in years t−1

and t to capture changes in forest cover. PRODES only identi�es clear-cut deforestation,

and therefore does not encompass forest degradation or selective logging. The system

also only accounts for the clearing of tropical forest � it is not technically �t to compute

the clearing of vegetation that falls into any other category.19

PRODES was created � and is still used � for the sole purpose of quantifying and

spatially locating annual tropical deforestation increments, which then serve to calculate

an Amazon-wide annual deforestation rate. When an area is identi�ed as deforested in

PRODES imagery, it is classi�ed as part of that year's deforestation increment; as of

the following year, it is classi�ed as accumulated deforestation and is incorporated into

what is known as the �PRODES deforestation mask�. Once part of this mask, an area

is never reclassi�ed. Thus, by construction, PRODES can neither detect deforestation

of areas covered by tropical regeneration, nor include this type of forest clearing in its

calculation of the annual deforestation rate. The PRODES deforestation increment is

16Although DETER was implemented in 2004, it remained in an experimental stage through 2005.
Although a few months of data are available for 2004 and 2005, consistent remote sensing data on
DETER cloud coverage only starts in 2006.

17Note that Brazilian Amazon Biome and Brazilian Legal Amazon refer to two di�erent regions. The
Amazon Biome ia a biological and ecological concept, whereas the Legal Amazon is a geopolitical
administrative subdivision. The Amazon Biome is entirely contained within the Legal Amazon.
Although the PPCDAm covered the entire Legal Amazon, more than 90% of tropical area deforested
over the past two decades was located inside the Amazon Biome.

18The 21 municipalities that portray no such variation exhibit very low municipal forest cover, averaging
only 4 km2.

19Although the Legal Amazon is mostly covered by tropical forest, some areas contain savanna-like native
vegetation called cerrado. These are considered as �non-forest� areas in PRODES.
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publicly released at an yearly basis both as an Amazon-wide georeferenced data set

(starting in 2000), and as aggregated municipality-level areas.

Annual data generated via PRODES do not refer to a calendar year. For a given

year t, PRODES measures deforestation that happened from August of the previous year

(t − 1) through July of that year (t). Typically, images from the Amazon dry season

(June through September) are used, due to lower cloud coverage. We henceforth refer to

the August-through-July time frame as the "PRODES year".

In our empirical analysis, we take deforestation to be the annual municipality-level

deforestation increment as de�ned by PRODES � total forest area cleared within a

municipality over the twelve months leading up to August of a given year. Thus, for a

given municipality, the annual deforestation increment of year t measures the area

deforested between the 1st of August of t − 1 and the 31st of July of t. Sample

municipalities exhibit a signi�cant amount of cross-sectional variation in deforestation

due to heterogeneity in municipality size. We therefore use a normalized measure of the

annual deforestation increment to ensure that our empirical analysis considers only

relative variations in deforestation within municipalities. The normalized variable is

constructed according to the following expression:

Deforestationit =
ADIit − ADI it
sd (ADIit)

(3)

where Deforestationit is the normalized annual deforestation increment for municipality

i and year t; ADIit is the annual deforestation increment measured in municipality i

between the 1st of August of t−1 and the 31st of July of t; and ADI it and sd (ADIit) are,

respectively, the mean and the standard deviation of the annual deforestation increment

calculated for each i over the 2002 through 2011 period.20 We test whether results are

driven by our choice of normalization technique by using the log of ADIit as the dependent

variable in alternative speci�cations.

Like most satellite-based systems, PRODES cannot detect land cover patterns beneath

clouds, which show up as visual obstructions in imagery. Shadows cast by clouds and

smoke from forest �res have the same e�ect � these are referred to as �non-observable

areas� in PRODES data. Full disclosure on cloud coverage and non-observable areas is

available with every year of PRODES data as of 2000 � we include these variables in all

regressions to control for measurement error. If a forest area that has been covered by

clouds for any number of years shows up as deforested once clouds clear, INPE records

20We take advantage of available municipality-level deforestation data for non-sample years to calculate
the mean and the standard deviation of the annual deforestation increment in a longer panel. For
comparison, we estimate all speci�cations using the mean and standard deviation over the 2007 through
2011 period for the normalization of our dependent variable. Results are generally robust to this
alternative normalization and are available from the authors upon request.
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that area as part of that year's deforestation increment, but notes the length of time it

remained unseen in satellite imagery. Calculation of the deforestation rate takes this time

period into account, in an attempt to more closely re�ect the actual speed at which the

Amazon was cleared.21

4.2. Law Enforcement

We use the total annual number of �ora-related �nes issued in each municipality as

a measure of the annual intensity of monitoring and law enforcement at the municipal

level. These data are publicly available from Ibama upon request. For each �ne, the

data set provides information on the type of environmental infraction being sanctioned

(allowing us to select �ora-related occurrences), the location (municipality level only, not

georeferenced), the amount to be paid, and the legal details of the sanction. To maintain

consistency across our panel, we consider the PRODES year as the relevant unit of time

in our sample. Thus, for each municipality, we calculate the total number of �nes in

a given year as the sum of all �nes applied in that municipality in the twelve months

leading up to August of that year.

Note that the knowingly low collection rates for �ora-related �nes applied in the

Brazilian Amazon do not interfere with our analysis (Barreto et al., 2008, 2009; Schmitt,

2015). Fines are often accompanied by other sanctions that are more binding, such as

seizure and destruction of goods, tools and materials, and embargoes of production areas.

Because adequate panel data on the use of these other sanctions are not available, we use

the number of �ora-related �nes as a proxy for monitoring and law enforcement e�orts as

a whole. Essentially, we are interested in exploring �nes as a means of capturing the e�ect

of law enforcers' presence on deforestation, and not that of the sanctioning instrument

itself.

4.3. Cloud Coverage

INPE publicly releases maps containing georeferenced data on DETER cloud coverage

for every month throughout the year.22 We construct our instrument � average annual

DETER cloud coverage at the municipal level � from these maps. Figure 2 provides

examples for a sample year and illustrates the high degree of within-year variation in

DETER cloud coverage. When visibility is at least partial, the maps show exactly which

areas were covered by clouds. When visibility is too precarious to derive any information

21See INPE (2013a) for a detailed account of PRODES methodology.
22As discussed in Section 2, DETER actually provides law enforcers with higher-frequency data on
deforestation hot spots. However, data is publicly released only at an aggregate level. Most data is
released as monthly aggregates, although a few occurrences of two data points for a single month do
occur in earlier years. In the latter case, we followed INPE's instruction to build a single month-based
observation by only considering areas that were covered by clouds in both data points as blocked from
satellite view in that month.
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about land cover, however, no map is produced � we assume DETER cloud coverage to

be complete in this case. We use monthly data to calculate, for each sample municipality

and year, average DETER cloud coverage for that municipality and year as a share of

total municipal area. Again, the relevant unit of time is the PRODES year to ensure

consistency with deforestation data time frames.

4.4. Additional Controls

Our analysis includes two sets of control variables � measures of local climate and

agricultural commodity prices � to address potential correlation with deforestation.

The �rst set of controls deals with potential correlation between deforestation and

regional microclimate, in particular, rainfall and temperature. Although the literature

is yet to reach a consensus, there is evidence that tropical forest clearings may a�ect a

region's microclimate (Nobre et al., 1991; Chen et al., 2001; Negri et al., 2004; Aragão

et al., 2008). Moreover, deforestation activity may itself be partially determined by

meteorological conditions that make it easier to penetrate, cut, and burn the forest.

Although understanding this relationship in detail is out of the scope of this paper, we

include a municipal measure of total precipitation and average temperature to account

for potential weather e�ects. In doing so, we also mitigate the concern regarding the

validity of our instrument under correlation between cloud coverage and geographical

characteristics that are, in turn, correlated with deforestation (see Section 3).

We construct our controls from monthly precipitation and temperature data compiled

by Matsuura and Willmott (2015), who draw on worldwide climate data to calculate a

regular georeferenced world grid of estimated precipitation and temperature over land.

Their estimations are based on geographic extrapolations of rainfall and temperature data

collected at weather stations. This database has been extensively used in the economic

literature both to evaluate the impact of climate variables on economic outcomes and

to provide relevant precipitation and temperature controls (Jones and Olken, 2010; Dell

et al., 2012).

Using this monthly georeferenced grid, we calculate total annual precipitation and

average annual temperature in each municipality according to the following rule: (i) for

municipalities that overlap with only one grid node, we take that node's value as the

municipal value; (ii) for municipalities that overlap with two or more grid nodes, we

average across nodes; (iii) for municipalities that have no overlap with any grid nodes, we

take the area of a 28-kilometer bu�er around the municipality and average across nodes

falling into this bu�er; and (iv) for the few municipalities whose 28-kilometer bu�er do

not overlap with any grid nodes, we use the value for the nearest grid node.23 Our annual

23Bu�er size was chosen based on the size of grid nodes � 28 kilometers is equivalent to half the distance
between grid nodes.
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precipitation and temperature variables are constructed to �t the PRODES year time

frame.

For the second set of controls, we consider agricultural commodity prices, which have

been shown to be drivers of deforestation (Angelsen and Kaimowitz, 1999; Hargrave and

Kis-Katos, 2013; Assunção et al., 2015). As commodity prices are endogenous to local

agricultural production and, thus, local deforestation activity, we must construct output

price series that capture exogenous variations in the demand for agricultural commodities

produced locally. As argued in Assunção et al. (2015), commodity prices recorded in the

southern Brazilian state of Paraná are highly correlated with average local crop prices

for Amazon municipalities. We follow the authors and collect commodity price series at

the Agriculture and Supply Secretariat of the State of Paraná (SEAB-PR).The set of

commodities includes beef cattle, soybean, cassava, rice, corn, and sugarcane.24

For each of the six commodities, we build an index of real prices for the �rst and second

semester of each calendar year. We start by de�ating monthly nominal prices to year

2000 Brazilian currency, and averaging the de�ated monthly prices across semesters. To

introduce cross-sectional variation in the commodity price series, we calculate a weighted

real price for each commodity according to the following expression:

PPAitc = PPtc ∗ Aic,2004−2005 (4)

where PPAitc is the weighted real price of commodity c in municipality i and

semester/year t; PPtc is the Paraná-based real price of commodity c in semester/year t;

and Aic,2004−2005 is the municipality-speci�c weight. For crops, the weight is given by the

share of municipal area used as farmland for crop c in municipality i averaged over 2004

and 2005. This term captures the relative importance of crop c within municipality i's

agricultural production in years immediately preceding our sample period. For beef

cattle, as annual pasture is not observable, the weight is given by the ratio of heads of

cattle to municipal area in municipality i averaged over 2004 and 2005.25

Our set of agricultural commodity price controls for year t includes prices for the �rst

and second semesters of year t− 1, as well as prices for the �rst semester of year t. Price

variables refer to calendar years, not PRODES years.

24Soybean, cassava, rice, and corn are predominant crops in terms of harvested area in the Amazon.
Although not a predominant crop in the region, sugarcane is also included to account for concerns
regarding the recent expansion of Brazilian ethanol biofuel production. Together, the �ve crops account
for approximately 70% of total harvested area in the Brazilian Amazon averaged across the 2000s.

25Variables on annual harvested area and heads of cattle at the municipality level are constructed based on
data from the Municipal Crop Survey (PAM) and Municipal Livestock Survey (PPM) of the Brazilian
Institute for Geography and Statistics (IBGE).
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4.5. Trends and Descriptive Statistics

The average number of �ora-related �nes at the municipal level was on the rise since

the early 2000s (see Figure 3). While it grew nearly sevenfold from 2002 through 2008,

average annual municipal deforestation declined by almost half during the same period.

In the following years, the number of �nes generally decreased alongside decreasing

deforestation. Such trends, although suggestive, are not conclusive, because they su�er

from endogeneity � an increase in law enforcement is expected to deter illegal forest

clearings, and less deforestation implies a lesser need for �nes. Our empirical analysis

aims at isolating the causal e�ect of law enforcement on deforestation, thereby shedding

light on the driving forces behind the trends shown.

[Figure 3 about here.]

Table 1 presents the means and standard deviations of the variables used in our

empirical analysis. Despite rising agricultural commodity prices and rising agricultural

production, both of which could have pushed for greater deforestation via incentives to

convert forest areas into agricultural land, average deforestation at the municipality

level decreased over the sample period. The table indicates that average DETER cloud

coverage (as share of total municipal area) is typically over 50%, and that there is

substantial variation in cloud coverage between municipalities.

[Table 1 about here.]

5. Main Results

5.1. Distribution of Law Enforcement

We start by looking at a set of descriptive regressions to shed light on how the

implementation of DETER monitoring a�ected Amazon law enforcement. Table 2

shows coe�cients estimated using univariate OLS in which the number of �ora-related

�nes issued in year t are regressed on the number of �ora-related �nes issued in year

t − 1 over a period covering both pre- and post-DETER years. The table's main result

is captured in the progression of the R-squared along the columns. The R-squared

values for columns 1 and 2, as well as for columns 4 through 9 are relatively high,

suggesting that there is a certain degree of persistence in law enforcement activity � a

high incidence of �nes in a given year tends to be correlated with a high incidence of

�nes the following year. This is an intuitive �nding, because deforestation itself is a

spatially persistent phenomenon, typically advancing into forested areas at the

forest/non-forest frontier.

[Table 2 about here.]
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Yet, both the R-squared and the estimated coe�cient for column 3 are considerably

lower than in all other columns. This indicates that the average municipal number of �nes

issued in 2005 were not as closely correlated with that of 2004. Recalling that the DETER

system was adopted in 2004, and that our variables are constructed to �t the PRODES

year, this can be interpreted as evidence of a DETER-induced shift in the distribution of

�ora-related �nes across Amazon municipalities � the adoption of DETER changed the

basis for targeting Amazon law enforcement, leading to a reallocation of law enforcers

across municipalities from 2004 to 2005. The comparatively high values of R-squared for

columns associated with post-DETER years capture the persistence of law enforcement

that is reestablished after the shift. This is to be expected, considering that the new

satellite-based targeting system directs law enforcers to areas a�ected by recent forest

clearing activity, which itself exhibits persistence. Thus, in addition to an increase in

the absolute number of �ora-related �nes observed after the implementation of DETER

(see Figure 3), there appears to have been a shift in the distribution of these �nes across

Amazon municipalities.

5.2. Cloud Coverage and Law Enforcement

Bearing these results in mind, we now turn to the assessment of the impact of

average annual DETER cloud coverage on the intensity of law enforcement, using the

number of �ora-related �nes issued in each Amazon municipality as a proxy for the

presence of law enforcers in that municipality. Table 3 presents OLS coe�cients for

speci�cations that gradually include controls as follows: column 1 reports results for the

univariate regression; column 2 adds controls for rainfall, temperature, PRODES cloud

coverage, and PRODES non-observable areas; column 3 adds municipality and year

�xed e�ects; column 4 adds controls for agricultural commodity prices; and column 5

adds controls for priority municipality status and percentage of municipal area covered

by protected areas. Note that the conservation policy controls in column 5 are known to

su�er from endogeneity with deforestation (see discussion in Section 3) and are

therefore only included as robustness checks.

[Table 3 about here.]

Results indicate that, for a given municipality and year, an increase in average annual

DETER cloud coverage signi�cantly reduces the number of �ora-related �nes issued in

that municipality and year. Coe�cients remain negative and signi�cant at standard

signi�cance levels in all speci�cations. Taking column 4 as our main speci�cation, we

�nd that a 10 percentage point increase in DETER cloud coverage leads to a reduction of

1.18 in the number of �nes at the municipality level. In relative terms, this is equivalent

to a 17% increase in the sample average for annual DETER cloud coverage leading to a
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11% decrease in the sample average for the number of �ora-related �nes during our period

of interest. Estimated coe�cients for PRODES cloud coverage and non-observable areas

are not signi�cant at 1% and 5% levels, which lends support to our instrument meeting

exclusion restrictions.

5.3. Law Enforcement and Deforestation

Table 4 provides estimated coe�cients for the impact of law enforcement on

deforestation. Were we to use OLS estimation (Panel A, column 1), we would �nd that

an increase in the municipality-level number of �ora-related �nes in a given year does

not signi�cantly a�ect deforestation the following year � not only is the point-estimate

zero, but it is also statistically insigni�cant. This �nding is, however, incorrect. The

magnitude and signi�cance of coe�cients estimated using 2SLS (Panel A, columns 2

and 3) indicate that OLS results are biased. By contrast, 2SLS results show that a

greater number of �ora-related �nes in a given year will signi�cantly reduce

deforestation the following year. This provides causal empirical evidence that increased

intensity of monitoring and law enforcement e�ectively curbs tropical deforestation.

The result is consistent in both magnitude and signi�cance across instrumental variable

speci�cations, indicating that the main �ndings are not driven by our choice of

normalization for the dependent variable.

[Table 4 about here.]

Note, however, that F-statistics for �rst-stage estimations in Table 4 raise concerns

about our instrument's strength, with F < 10 suggesting a weak instrument (Stock et al.,

2002). To address this, Table 4 also reports statistics for Anderson and Rubin (1949) and

Stock and Wright (2000) tests, both of which provide weak instrument-robust inference

for testing the signi�cance of the endogenous regressor. AR and SW statistics indicate

that the coe�cient of the endogenous law enforcement variable is signi�cantly di�erent

from zero in spite of the weak instrument. This corroborates our �nding that increased

intensity of law enforcement in a given year has a signi�cant deterrent e�ect on Amazon

deforestation the following year.

5.4. Counterfactual Simulation

To better understand the magnitude of this e�ect, we conduct a counterfactual

simulation to estimate total sample deforestation in a hypothetical scenario in which

Amazon monitoring and law enforcement has been entirely shut down. To do this, we

assume that no �nes were applied in all municipalities from 2006 through 2011 � law

enforcers were entirely absent from the Amazon. Table 5 presents both observed and

counterfactual annual deforestation �gures. We estimate that, without environmental

21



monitoring and law enforcement, over 152,500 square kilometers of tropical forest would

have been cleared between 2007 and 2011 � more than three and a half times total

observed sample deforestation during this period. Results indicate that monitoring and

law enforcement e�orts helped avoid the cutting down of an average 22,000 square

kilometers of forest per year.

[Table 5 about here.]

5.5. Persistence of Deterrent E�ect

Thus far, �ndings attests to the strong deterrent e�ect of law enforcement on Amazon

deforestation. To further characterize this e�ect, we test for its persistence. Table 6

presents estimated coe�cients from regressions that reproduce our preferred speci�cation

(Table 4, Panel A, column 2) with additional double and triple lags for the number of

�ora-related �nes. Results indicate that the deterrent e�ect of law enforcement dissipates

over time � greater intensity of law enforcement today will have a strong deterrent e�ect

on deforestation one year from now, a smaller deterrent e�ect on deforestation two years

from now, and no signi�cant e�ect on deforestation three years from now. This pattern

reinforces the need to sustain continuous monitoring and law enforcement e�orts in the

Amazon to e�ectively combat tropical forest clearings.

[Table 6 about here.]

5.6. Leakage E�ects

Results indicate that law enforcement was e�ective at curbing Amazon in the second

half of the 2000s. Yet, our strategy does not ensure that deforestation reduction was

a widespread phenomenon � within-municipality clearings may have been contained in

light of stricter law enforcement, but potential leakage may have redistributed forest

clearings into municipalities where law enforcers were not as present. We use descriptive,

anecdotal, and regression-based evidence to argue that monitoring and law enforcement

e�ectively contributed to contain aggregate Amazon deforestation.

First, recall Figure 3, which shows that total deforestation in the Amazon Biome fell

sharply from 2003 through 2011. Indeed, during this period, the Amazon-wide

deforestation rate peaked at over 27,000 square kilometers and subsequently dropped to

around 6,000 square kilometers (INPE, 2013b). This illustrates how aggregate forest

clearings slowed down in the Brazilian Amazon starting in the mid-2000s, which

coincides with the timing of adoption of the DETER system.

Second, the very nature of the DETER system inhibits leakage of deforestation. As

the monitoring satellite covers the full extent of the Amazon at all times, potential forest

clearing agents cannot easily identify an area that is subject to more or less monitoring
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at any given time. One could argue that, because details regarding DETER's limitation

to detect land cover beneath clouds are public, o�enders could try to concentrate clearing

activity in areas more prone to cloud coverage. We �nd this to be an unlikely story. After

all, once clouds clear and deforestation is detected by DETER, an alert would be issued

and the area would likely be targeted by law enforcers. Considering that clearing tropical

forest and converting the land to productive agricultural use is usually a time-consuming

process, basing one's decision of where to deforest on the location of clouds would probably

not allow su�cient time for o�enders to collect the bene�ts from deforestation before law

enforcers reach them. In addition, recall from Figure 2 that there is considerable spatial

variation in cloud coverage within the year.26 Thus, it is unlikely that a substantial area

of the Amazon will be constantly covered by clouds.

Finally, we explore the e�ect of law enforcement on forest clearings using a more

aggregate unit of analysis � a municipality's neighborhood. We test three alternative

de�nitions for neighborhood: (i) a municipality plus all municipalities with which it shares

a border; (ii) a municipality plus its three closest neighbors; and (iii) a municipality

plus all municipalities located within its 200-kilometer bu�er.27 We estimate the impact

of an increase in the number of environmental �nes in a given municipality on total

deforestation occurring within its neighborhood. The estimation equation is given by:

Deforestation∂i,t =β1Finesit−1 +
∑
k

βkXkit + αi + φt + εit (5)

where all variables are de�ned as before, Finesit−1 are again instrumented by

DETERcloudsit−1, and the ∂i subscript denotes a variable at the neighborhood level.

Table 7 presents estimated coe�cients for each of the alternative de�nitions of

neighborhood. Results show that, in all speci�cations, the number of environmental

�nes in municipality i had a signi�cant negative impact on deforestation in its

neighborhood. These empirical �ndings, combined with the observed decrease in

aggregate Amazon deforestation rates and the nature of the DETER monitoring

system, suggest that increased law enforcement in a given municipality did not lead to

leakage of forest clearing activity into neighboring areas.

[Table 7 about here.]

26Although Figure 2 illustrates select data for 2011, other sample years exhibit similar patterns in terms
of within-year variation in cloud coverage.

27In de�nition (ii), distance is measured from municipalities' centroids. In de�nition (iii), deforestation
in each neighbor is weighted by a factor of exp(−τ ∗ distance), where τ is chosen such that a neighbor
that is 50 kilometers away from a given municipality receives a weight of 1/2.
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6. Robustness Checks

Although our results are consistent with the relevant Brazilian institutional context,

we subject them to a series of robustness tests.

6.1. Instrument De�nition

We start by testing whether coe�cients capture a spurious e�ect due to the potential

correlation between PRODES cloud coverage and DETER cloud coverage.28 Although

the satellites used in the two remote sensing systems are di�erent, both cannot detect land

cover patterns beneath clouds. Yet, while DETER is an year-round system, PRODES uses

imagery only from the Amazon's dry season to optimize visibility (see details in Section

4.1). We explore this feature to create an alternative instrument for law enforcement

that is, by construction, better insulated against cloud correlation � we recalculate

average DETER cloud coverage for each municipality excluding the period of PRODES

remote sensing. Table 8 presents second-stage coe�cients estimated using the alternative

instrument. Results remain robust throughout, suggesting our main �ndings are not

being driven by a mechanical correlation between DETER cloud coverage and PRODES

cloud coverage and non-observable areas.

[Table 8 about here.]

6.2. Time Trends

Our identi�cation strategy relies on the fact that municipalities are comparable after

controlling for observable characteristics and municipality and year �xed e�ects.

However, one could argue that our results may have been driven by baseline di�erences

across municipalities that cause them to follow di�erent deforestation trends, and that

are not adequately mitigated by the inclusion of municipality and year �xed e�ects. We

raise three scenarios in which this concern might hold, and propose empirical means of

testing for them individually by adding scenario-speci�c controls to our preferred 2SLS

speci�cation (Table 4, Panel A, column 2).

First, remaining forest cover prior to the implementation of DETER varies

signi�cantly across Amazon municipalities. This variation could a�ect municipal

deforestation trends, since the area in which forest clearings can still take place within a

municipality decreases with decreasing forest cover.29 We therefore control for a trend

28Correlation coe�cients are 0,21 for DETER cloud coverage and PRODES cloud coverage, and 0,08 for
DETER cloud coverage and PRODES non-observable areas.

29In addition to being correlated with current deforestation increments, the stock of deforestation might
also be correlated with local microclimate, as discussed brie�y in Section 4.4. Thus, in addressing this
case, we are also addressing one of the concerns regarding the validity of our instrument's exclusion
restriction.
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determined by the pre-DETER share of cleared forest area in each municipality � an

interaction between a linear year trend and total deforested area in 2003 as share of

municipal area. Second, the deforestation increment in pre-sample years could itself be

associated with municipal forest clearing patterns in our sample. If higher municipality

deforestation is indicative of a more dynamic local economy, a baseline di�erence in

deforestation increment could result in di�erent clearing trends over time, as

economically more dynamic municipalities may be subject to greater deforestation

pressures. While the �rst scenario looks at a stock dimension of municipal

deforestation, this scenario looks at a �ow dimension of it. We run a similar test as in

the previous case, but instead of using the pre-DETER share of deforested territory, we

control for a trend determined by municipal deforestation increments observed in 2003

� an interaction between a linear year trend and the 2003 deforestation increment.30

Third, the pre-DETER distribution of law enforcement could have a�ected

municipalities' post-DETER deforestation trends. The deterrent e�ect of monitoring

may have pushed municipalities subject to more intense law enforcement in the early

2000s into di�erent deforestation trajectories as compared to those that were relatively

less targeted by law enforcers during the same period. We address this by controlling

for a trend determined by the 2002 through 2004 �nes average � an interaction

between a linear year trend and the average number of �ora-related �nes issued in each

municipality between 2002 and 2004.

[Table 9 about here.]

Should our results have been driven by the natural convergence in forest clearing

activity between municipalities with varying stocks of deforested areas, di�erent economic

dynamics and deforestation pressures, or shifts in the distribution of law enforcement,

tests involving the proposed time trends should yield insigni�cant coe�cients for our law

enforcement variable. Results, shown in Table 9, Panel A, attest to the robustness of our

estimated e�ects.

6.3. Sample and Variable Selection

As an additional set of robustness checks, we test whether alternative de�nitions for

sample and controls a�ect our results. Table 9, Panel B, shows estimated coe�cients.

We again address the concern regarding the municipal stock of remaining forest area

by restricting our sample to municipalities that had over 50% of forest cover in 2003.

Results show that the coe�cient for law enforcement is negative and signi�cant in the

restricted sample. Finally, we consider other conservation policies that, although relevant,

30Note that this test captures potential e�ects from di�erences in infrastructure across municipalities,
such as road networks.
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are not included in our preferred speci�cation due to endogeneity concerns (see Section

3). As seen in Column 2, the inclusion of controls for priority municipalities and share

of municipal area under protection reduces the signi�cance of our coe�cient of interest,

which remains signi�cant at a level of 10%, but does not a�ect its sign. Note that the

positive point-estimate for the protected areas variable con�rms our endogeneity concerns.

Protected areas created in the second half of the 2000s as a means to block the advance

of deforestation were typically located near areas of intense forest clearing activity. The

estimated positive coe�cient captures this activity, as municipalities where deforestation

was highest tended to concentrate the creation of new protected areas, and therefore had

a higher share of protected territory.

Finally, our last set of robustness exercise tests the quality of our precipitation

variable. Our instrument's exclusion restriction hinges on, conditional on controls,

DETER cloud coverage being uncorrelated with deforestation through all channels

other than law enforcement. The inclusion of rainfall as a control is therefore central to

our instrument's validity. Although climate data have been extensively used in the

economic literature, the applicability of certain datasets can be questioned in speci�c

cases. In particular, data sets compiled from ground weather station data in areas with

low station density � as is the case with the Brazilian Amazon � can carry signi�cant

inaccuracies. Climate scientists have developed several gridded data products using a

variety of interpolation techniques to construct grid node-level data for these areas

using information collected in ground stations. Because the constructed data associated

with each grid node may vary according to the method chosen for interpolation,

di�erent techniques might yield considerably di�erent datasets for the same region.

Thus, results for evaluations that use climate data like our own might ultimately

depend on the data that have been used.

Common practice to mitigate this concern in the economic literature determines

that empirical results be subjected to robustness tests using alternative data sets for

climate variables (Dell et al., 2014). If results prove robust to the change, they are more

likely to be independent from the speci�c interpolation technique used in climate data

construction. We therefore provide a last set of robustness checks, running regressions

with our preferred speci�cation, but using two alternative sources of data for the

precipitation variable.The Global Precipitation Climatology Center (GPCC) is a

gridded dataset built from interpolated ground station data (as is our main dataset),

while the ERA Project data set uses climate model inference to calculate total

precipitation.Table 10 presents OLS and 2SLS coe�cients for both alternative sources.

Columns 1 and 2 refer, respectively, to �rst- and second-stage regressions using GPCC

data, while columns 3 and 4 refer to �rst- and second-stage regressions using ERA

Project data. Results are generally consistent with those obtained using the Matsuura
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and Willmott (2015) data, which suggests that our �ndings are robust to alternative

precipitation data sets.

[Table 10 about here.]

Overall, the robustness of our results supports the speci�cations chosen for our

preferred regressions, as well as the interpretation of our �ndings.

7. Costs and Collateral E�ects of the Policy

Overall, our �ndings suggest that stricter monitoring and law enforcement e�orts were

e�ective at curbing deforestation in the Brazilian Amazon � but at what cost? From

a �nancial standpoint, were they a cost-e�ective way of protecting the forest? From a

production standpoint, did they have any adverse e�ects on agricultural production? In

this section, we address each of these concerns in turn.

7.1. Cost-bene�t Analysis

We make a �rst attempt at answering whether more stringent Amazon monitoring

and law enforcement was a cost-e�ective policy by performing a back-of-the-envelope

calculation of its costs and bene�ts. In this simpli�ed cost-bene�t analysis, we compare

the sum of Ibama's and INPE's annual budgets with the estimated monetary bene�ts of

preserving forest areas and thereby avoiding carbon dioxide emissions. We use �gures

from our counterfactual simulation to account for the Amazon-wide deterrent e�ect of

monitoring and law enforcement.

According to our simulation, monitoring and law enforcement e�orts preserved an

average of 22,200 km2 of tropical forest area per year between 2007 and 2011. This is

equivalent to approximately 815 million tCO2 per year.
31 Assuming that Ibama's annual

budget from 2007 through 2011 was 560 million USD (value of its 2011 budget) and that

INPE's annual budget in the same period was 125 million USD (value of its 2010 budget),

any price of carbon set above 0.84 USD/tCO2 would more than compensate the cost of

environmental monitoring and law enforcement in the Brazilian Amazon. Compared to

the price of 5.00 USD/tCO2 commonly used in current applications, these �gures suggest

that active Amazon monitoring and law enforcement have the potential to yield signi�cant

net monetary gains.

Note that our estimates only capture a lower bound for this potential gain. The

assumption that Ibama and INPE are exclusively dedicated to Amazon monitoring and

law enforcement leads to an overestimation of the cost of protecting the forest � in reality,

31Estimations are based on a conversion factor of 10,000 tC/km2 (36,700 tCO2/km
2), as established in

MMA (2011).
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only a share of their budgets is used for this. In addition, we only consider the emissions-

saving dimension of protecting tropical forest. There may well be other bene�ts of doing

so, such as the preservation of biodiversity and protection of watersheds, implying that

our calculations underestimate the bene�ts of protecting the forest (Stern, 2008; Burgess

et al., 2012). Thus, in being a conservative estimate, our cost-bene�t comparison becomes

even more striking.

7.2. Agricultural Impact

There is an ongoing debate among both academics and policymakers regarding

potential tensions between economic growth and conservation of natural resources. The

concepts are not mutually exclusive by de�nition � in fact, there is anecdotal and

limited causal evidence that some countries have experienced improvements in

environmental quality alongside economic development.32 Yet, the very nature of

agricultural production, which essentially depends on the availability of land, implies it

is closely related to practices that make such land available. Indeed, deforested land in

the Amazon has largely been destined for use in cattle ranching � since the mid-2000s,

more than two thirds of cleared areas had been converted into pasture (INPE, 2013c).

In light of this, it would be reasonable to expect agricultural production to be a�ected

by an increase in law enforcement stringency that slows down forest clearings.

The topic is of particular relevance to the Brazilian Amazon, which has a long history

of insecure land property rights. As a historical account of the occupation of the Amazon

and its consequences for land tenure in the region are out of the scope of this paper33,

it su�ces to say that the Brazilian institutional framework does not favor the protection

of landholders' rights, with land reform policies standing as a particular threat to title

holders who risk losing their land to agrarian reform (Araujo et al., 2009). To this day,

violent con�ict over land is not uncommon in the Amazon, and squatters, which have

been known to occupy both public and private lands, are still active in the region (Alston

et al., 2000; Araujo et al., 2009). Combined, these factors serve as a disincentive to the

formality of land tenure and agricultural production.

Bearing this in mind, we investigate whether the greater intensity of law enforcement

had an adverse impact on local agricultural production. We use two di�erent measures

of municipality-level production: (i) agricultural GDP from Brazilian national accounts,

32See Arrow et al. (1995) for an early, but concise and targeted, criticism of the idea behind improvements
in environmental quality following economic growth, and Stern (2004) for a brief review of the empirical
literature that seeks to assess the phenomenon. Foster and Rosenzweig (2003) provide one of the few
insights into the causes of an observed increase in forest area during a period of economic expansion
in India. The authors explore an empirical setting that enables the distinction between an increase in
demand for forest amenities (such as clean air) and an increase in demand for forest products (such as
wood for fuel). They �nd support for the latter mechanism.

33See Mueller et al. (1994) for an overview.
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and (ii) crop revenues from PAM/IBGE. Table 11 presents coe�cients estimated in 2SLS

using both our preferred speci�cation (Table 4, Panel A, column 2) and a version of

it that does not include agricultural commodity prices. Because agricultural GDP is a

measure of value, controlling for prices allows us to capture the potential impact of law

enforcement on agricultural quantum.

[Table 11 about here.]

Results, which are consistent across speci�cations, cannot statistically conclude that

there is trade-o� between conservation and agricultural production. This suggests that

it would be possible to contain forest clearings without signi�cantly compromising local

agricultural production. Although informative, this exercise is not entirely conclusive.

The e�ect may have resulted from agricultural producers responding to stricter law

enforcement by shifting from a low-productivity setup to a more productive one.In this

sense, production that was lost at the extensive margin may have been compensated for

at the intensive one. Moreover, not having an immediate adverse e�ect on agriculture

does not mean that law enforcement had no e�ect at all. If farmers adjust production

over time, our sample period might not be su�cient to capture this e�ect. Future

investigations of this topic, once data become available, could shed light on the matter.

Our results also fail to capture potential impacts on informal production, since

agricultural GDP and crop revenue only measure production within the formal sector.

This is an important caveat considering the Amazon's history of insecure property

rights. In light of this, it is to be expected, though di�cult to measure, that informality

accounts for a relevant share of agricultural production in the Amazon. An analysis

capable of looking at the informal sector, subsistence agriculture, or individual-level

production, might yield di�erent results to those presented in Table 11 � to the best of

our knowledge, no data is currently available for this analysis.

8. Final Comments

Combined, our results show that monitoring and law enforcement played a crucial

role in curbing Amazon deforestation, and thereby containing greenhouse gas emissions.

Moreover, it appears that the policy was relatively cost-e�ective, both in �nancial and

(immediate) agricultural production terms.

Our �ndings yield important policy implications. The sheer magnitude of estimated

forest area spared from deforestation in counterfactual exercises suggests that monitoring

and law enforcement is a cornerstone of Brazilian conservation policy. This does not in any

way imply that other policies should not be used to combat tropical deforestation. Rather,

it indicates that such policies are complementary to monitoring and law enforcement

29



e�orts, e�ectively deterring forest clearings at the margin, while monitoring and law

enforcement contain the bulk of deforestation.

Additionally, our results strongly speak for the strategic use of advanced technology

for combating deforestation. Indeed, they show there is substantial value in further

improving remote sensing-based monitoring. In particular, overcoming DETER's

incapacity to see through clouds and obtaining higher-resolution land cover imagery at

high frequency are two examples of technological advances that could improve law

enforcement targeting capability and add signi�cant value to Brazil's conservation

e�orts. Some enhancements to Amazon monitoring capability are already in place:

Ibama has used radar technology, capable of detecting land cover patterns beneath

cloud coverage, to monitor forest clearing activity in select areas of the Amazon, and

INPE is developing the DETER-B and DETER-C systems to provide information on

deforestation hot spots at higher resolutions (though lower frequencies) than the one

currently available in DETER. Our �ndings reinforce the need of continuing and

amplifying the use of such technologies.

Finally, a simple cost-bene�t analysis suggests that the gains derived from reduced

deforestation more than compensate monitoring and law enforcement costs. This

reinforces the case for promoting preservation of the native forest via monitoring and

law enforcement e�orts, and for continuing to improve technology that supports these

e�orts.
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Figure 1: How is Deforestation Detected in DETER Satellite Imagery?

Notes: top and bottom panels show satellite images of the same location recorded at two di�erent
moments in time � the top panel is an earlier image and the bottom panel a later one. Green
indicates forest areas and purple indicates deforested areas. The area outlined in yellow, which
shows signs of changes in land cover, would trigger the issuing of a deforestation alert in DETER.
Source (image): Ibama.
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Figure 2: DETER Cloud Coverage and Deforestation Alerts

(a) January 2011 (b) April 2011

(c) July 2011 (d) October 2011

Clouds

! ! ! ! ! !

! ! ! ! ! !

! ! ! ! ! !

! ! ! ! ! !

Alerts
Municipalities

Notes: maps portray DETER cloud coverage and deforestation alerts for four sample months in
2011. The �gure shows that no alerts are issued in areas covered by clouds. It also illustrates
the typically high degree of within-year variation in DETER cloud coverage for any given area
in the Brazilian Amazon. Source: authors' elaboration based on data from DETER/INPE.
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Figure 3: Number of Flora-Related Fines and Deforestation
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Notes: the �gure shows the municipality-level average number of �ora-related �nes and average
deforestation increment. The sample includes all Amazon Biome municipalities that exhibited
variation in forest cover during the sample period and for which data were available. Source:
authors' elaboration based on data from Ibama (�nes) and PRODES/INPE (deforestation).
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Table 1: Descriptive Statistics

2006 2007 2008 2009 2010 2011
Deforestation 20.38 21.41 24.56 10.77 11.61 10.67

(54.34) (59.12) (57.76) (34.55) (28.23) (27.90)

Number of �nes 10.65 8.99 14.29 10.71 9.10 9.74
(23.77) (19.47) (33.58) (30.86) (21.74) (24.70)

DETER cloud 0.38 0.70 0.60 0.67 0.60 0.54
(0.07) (0.17) (0.21) (0.22) (0.22) (0.20)

PRODES cloud 372.73 563.13 437.46 430.15 819.80 552.70
(1,440.88) (2,392.92) (1,795.98) (1,387.30) (3,297.15) (2,866.25)

PRODES non-observable 48.29 49.06 23.56 16.41 14.81 14.76
(261.46) (261.85) (231.41) (101.83) (101.19) (101.12)

Rainfall 2,243.13 2,169.45 2,233.80 2,205.30 1,930.27 .
(616.45) (615.68) (574.07) (518.35) (399.03) (.)

Temperature 26.03 26.23 25.91 26.17 26.70 .
(1.15) (1.09) (1.22) (1.17) (1.27) (.)

Agricultural GDP 17,927.22 20,252.44 23,408.18 22,442.18 . .
(19,711.73) (27,926.51) (35,564.35) (30,861.94) (.) (.)

Crop production 9,988.08 11,888.89 15,644.88 14,096.38 12,349.22 16,679.24
(27,641.19) (38,200.96) (55,204.72) (48,380.42) (35,139.75) (56,404.34)

Price, beef cattle 65.04 71.86 86.94 82.05 85.09 91.84
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Price, soybean 74.73 86.80 103.59 106.54 83.67 89.70
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Price, cassava 54.18 79.72 83.04 79.34 122.18 99.50
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Price, rice 92.42 97.23 119.17 110.49 102.54 73.03
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Price, corn 58.92 77.43 74.58 62.61 56.77 75.75
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Price, sugarcane 108.81 93.09 74.49 80.11 88.34 107.86
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Notes: the table reports municipality-level annual means and standard deviations (in parentheses) for the variables
used in the empirical analysis. The sample includes all Amazon Biome municipalities that exhibited variation in
forest cover during the sample period and for which data were available. Sources and units: deforestation (square
kilometers, PRODES/INPE); �ora-related �nes (total number, Ibama); DETER cloud coverage (share of municipal
area, DETER/INPE); PRODES cloud coverage (square kilometers, PRODES/INPE); PRODES non-observable area
(square kilometers, PRODES/INPE); rainfall (millimeters, Matsuura and Willmott (2015)); temperature (degrees
Celsius, Matsuura and Willmott (2015)); agricultural GDP (BRL, IBGE); crop production as revenue (BRL,
PAM/IBGE); crop price indices (year 2000 BRL, SEAB-PR and PAM/IBGE); cattle price index (year 2000 BRL,
SEAB-PR and PPM/IBGE).
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Table 4: IV Regressions: E�ect of Law Enforcement on Deforestation

Panel A: second-stage Results

(1) (2) (3)
OLS: normalized IV: normalized IV: log
deforestation deforestation deforestation

Number of �nes, t-1 -0.0006 -0.0564** -0.0738**
(0.0008) (0.0267) (0.0319)

Municipality and year FE Yes Yes Yes
Controls Yes Yes Yes
Observations 2,630 2,630 2,630
Number of municipalities 526 526 526

F-statistic from �rst stage 6.336 6.336
AR - Chi2 13.50 24.60
Prob > AR 0.000239 7.04e-07
SW - S - stat 17.42 27.53
Prob > SW 2.99e-05 1.54e-07

Panel B: �rst-stage Results

Fines

DETER cloud -11.4735**
(4.5583)

Rainfall, t-1 -0.4874***
(0.1605)

Temperature, t-1 -2.9600**
(1.3712)

PRODES cloud 0.0304
(0.0289)

PRODES non-observable 0.2434
(0.2059)

Municipality and year FE Yes
Prices Yes
Observations 2,630
Number of municipalities 526

Notes: coe�cients are estimated using a municipality-by-year panel data set covering the 2006
through 2011 period. The sample includes all Amazon Biome municipalities that exhibited variation
in forest cover during the sample period and for which data were available. Panel A reports second-
stage results; column 1 presents OLS coe�cients; columns 2 and 3 present 2SLS coe�cients using
DETER cloud coverage as an instrument for the number of �ora-related �nes. The dependent
variable used in columns 1 and 2 is the normalized annual municipal deforestation increment; in
column 3, it is replace by the log of the annual municipal deforestation increment. The speci�cation
used for all regressions in Panel A is that of equation (2), such that all columns include controls
for lagged rainfall, lagged temperature, PRODES cloud coverage, PRODES non-observable areas,
agricultural commodity prices, and municipality and year �xed e�ects. Panel B reports �rst-stage
results. Robust standard errors are clustered at the municipality level. Signi�cance: *** p<0.01,
** p<0.05, * p<0.10.
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Table 5: Counterfactual Simulation: Shut Down of Amazon Law Enforcement

Year Observed Estimated Di�erence
deforestation deforestation estimated�observed

2007 11,263 30,941 19,678
2008 12,918 33,218 20,300
2009 5,663 31,203 25,541
2010 6,109 31,013 24,904
2011 5,610 26,173 20,563

Total 2007�2011 41,563 152,549 110,986

Notes: all �gures are in square kilometers. The counterfactual simulation is
conducted using estimated coe�cients from our preferred speci�cation (Table 4,
Panel A, column 2). The hypothetical scenario sets the annual number of �ora-
related �nes in each municipality from 2006 through 2011 as zero to capture the
complete absence of law enforcers in the Amazon. �Observed deforestation� shows
total recorded sample deforestation; �Estimated deforestation� shows total estimated
sample deforestation in hypothetical scenario in which no �ora-related �nes are
issued in any municipality throughout the sample period; �Di�erence� reports the
di�erence between estimated and observed totals.
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Table 6: Persistence of Law Enforcement Deterrent E�ect

(1) (2)
IV: normalized IV: normalized
deforestation deforestation

Fines, t�2 -0.0324*
(0.0169)

Fines, t�3 -0.0111
(0.0118)

Observations 2,104 1,578
Number of municipalities 526 526
Municipality and year FE Yes Yes
Controls Yes Yes

Notes: coe�cients are estimated using a municipality-by-year panel data
set covering the 2006 through 2011 period. The sample includes all
Amazon Biome municipalities that exhibited variation in forest cover
during the sample period and for which data were available. All regressions
are based on our preferred speci�cation (Table 4, Panel A, column
2). All speci�cations are estimated using 2SLS and the normalized
annual deforestation increment as dependent variable. Column 1 presents
coe�cients for speci�cations using the two-period-lagged total number of
�ora-related �nes, which is instrumented by two-period-lagged DETER
cloud coverage; column 2 repeats the speci�cation of previous column
using the three-period-lagged total number of �ora-related �nes, which
is instrumented by three-period-lagged DETER cloud coverage. All
speci�cations include controls for rainfall, temperature, PRODES cloud
coverage, PRODES non-observable areas, agricultural commodity prices,
and municipality and year �xed e�ects. Robust standard errors are
clustered at the municipality level. Signi�cance: *** p<0.01, ** p<0.05,
* p<0.10.
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Table 7: Deforestation Leakage E�ects

(1) (2) (3)
All border Three nearest 200km
neighbors neighbors bu�er

Fines in t�1 -0.107* -0.089* -0.116**
(0.062) (0.049) (0.058)

Number of municipalities 545 540 545
Municipality and year FE Yes Yes Yes
Controls Yes Yes Yes

Notes: coe�cients are estimated using a municipality-by-year panel data set
covering the 2006 through 2011 period. The sample includes all Amazon
Biome municipalities that exhibited variation in forest cover during the sample
period and for which data were available. All regressions are based on our
preferred speci�cation (Table 4, Panel A, column 2), but are adapted to capture
leakage e�ects following equation (5). All speci�cations are estimated using
2SLS, the normalized annual municipal deforestation increment as dependent
variable, and DETER cloud coverage as an instrument for the number of �ora-
related �nes. A municipality's neighborhood is alternatively de�ned as: (i) a
municipality plus all municipalities with which it shares a border (column 1); (ii)
a municipality plus its three closest neighbors (column 2); and (iii) a municipality
plus all municipalities located within its 200-kilometer bu�er (column 3).
All speci�cations include controls for rainfall, temperature, PRODES cloud
coverage, PRODES non-observable areas, agricultural commodity prices, and
municipality and year �xed e�ects. Robust standard errors are clustered at the
municipality level. Signi�cance: *** p<0.01, ** p<0.05, * p<0.10.

43



Table 8: Robustness Checks: E�ect of Law Enforcement on Deforestation Using
Alternative Instrument

(1) (2) (3)
OLS: normalized IV: normalized IV: log

VARIABLES deforestation deforestation deforestation

Number of �nes, t-1 -0.0006 -0.0442** -0.0555**
(0.0008) (0.0220) (0.0250)

Observations 2,630 2,630 2,630
Number of municipalities 526 526 526
Municipality and year FE Yes Yes Yes
Controls Yes Yes Yes
F-statistic from �rst-stage 6.598 6.598
AR - Chi2 9.503 14.69
Prob > AR 0.00205 0.000127
SW - S - stat 9.377 14.20
Prob > SW 0.00220 0.000165

Notes: average annual DETER cloud coverage is calculated excluding PRODES remote sensing
months. Coe�cients are estimated using a municipality-by-year panel data set covering the
2006 through 2011 period. The sample includes all Amazon Biome municipalities that exhibited
variation in forest cover during the sample period and for which data were available. Column
1 presents OLS coe�cients; columns 2 and 3 present 2SLS coe�cients using DETER cloud
coverage as an instrument for the number of �ora-related �nes. The dependent variable used
in columns 1 and 2 is the normalized annual municipal deforestation increment; in column 3,
it is replace by the log of the annual municipal deforestation increment. The speci�cation used
for all regressions is the same as that of Table 4, Panel A, column 2, such that all columns
include controls for lagged rainfall, lagged temperature, PRODES cloud coverage, PRODES
non-observable areas, agricultural commodity prices, and municipality and year �xed e�ects.
Robust standard errors are clustered at the municipality level. Signi�cance: *** p<0.01, **
p<0.05, * p<0.10.
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Table 9: Robustness Checks: E�ect of Law Enforcement on Deforestation

Panel A: time trends

(1) (2) (3)

Fines, t�1 -0.0711∗∗ -0.0547∗∗ -0.0531∗∗

(0.0330) (0.0276) (0.0246)

Trend * 2003 share of deforested area Yes

Trend * 2003 deforestation increment Yes

Trend * 2002�2004 average of �nes Yes

Observations 2,630 2,630 2,630

Panel B: alternative sample and additional controls

(1) (2)
restricted endogenous
sample controls

Fines, t�1 -0.0680∗∗ -0.0598∗

(0.0326) (0.0357)

Priority municipalities 0.0821
(0.414)

Protected areas 2.479∗

(1.500)

Observations 1,655 2,630

Notes: coe�cients are estimated using a municipality-by-year panel data set covering the
2006 through 2011 period. The sample includes all Amazon Biome municipalities that
exhibited variation in forest cover during the sample period and for which data were
available. All regressions are based on our preferred speci�cation (Table 4, Panel A,
column 2). All speci�cations are estimated using 2SLS, the normalized annual deforestation
increment as dependent variable, and average annual DETER cloud coverage as an
instrument for the number of �nes. All speci�cations include controls for lagged rainfall,
lagged temperature, PRODES cloud coverage, PRODES non-observable areas, agricultural
commodity prices, and municipality and year �xed e�ects. Panel A presents results for
three di�erent time trend tests: column 1 controls for an interaction between a linear year
trend and total deforested area in 2003 as share of municipal area; column 2 controls for an
interaction between a linear year trend and the 2003 deforestation increment; and column
3 controls for an interaction between a linear year trend and the average number of �nes
applied in each municipality between 2002 and 2004. Panel B presents results for non-
trend tests: column 1 uses a restricted sample of municipalities that had over 50% of forest
cover in 2003; and column 3 adds controls for priority municipality status and percentage
of municipal area covered by protected areas. Robust standard errors are clustered at the
municipality level. Signi�cance: *** p<0.01, ** p<0.05, * p<0.10.

45



T
ab
le
10
:
R
ob
u
st
n
es
s
C
h
ec
k
s:
E
�
ec
t
of
L
aw

E
n
fo
rc
em

en
t
on

D
ef
or
es
ta
ti
on

U
si
n
g
A
lt
er
n
at
iv
e
P
re
ci
p
it
at
io
n
D
at
a

(1
)

(2
)

(3
)

(4
)

O
L
S
u
si
n
g

2S
L
S
u
si
n
g

O
L
S
u
si
n
g

2S
L
S
u
si
n
g

G
P
C
C
d
at
as
et

G
P
C
C
d
at
as
et

E
R
A
P
ro
je
ct

d
at
as
et

E
R
A
P
ro
je
ct

d
at
as
et

F
in
es
,
t�
1

-0
.0
00
5

-0
.0
62
2*

-0
.0
00
6

-0
.0
62
3*
*

(0
.0
00
8)

(0
.0
32
8)

(0
.0
00
8)

(0
.0
31
2)

O
b
se
rv
at
io
n
s

2,
61
0

2,
61
0

2,
63
0

2,
63
0

N
u
m
b
er

of
m
u
n
ic
ip
al
it
ie
s

52
2

52
2

52
6

52
6

M
u
n
ic
ip
al
it
y
an
d
ye
ar

F
E

Y
es

Y
es

Y
es

Y
es

C
on
tr
ol
s

Y
es

Y
es

Y
es

Y
es

F
-s
ta
ti
st
ic
fr
om

�
rs
t-
st
ag
e

5.
11
0

5.
51
8

A
R
-
C
h
i2

11
.3
9

13
.0
1

P
ro
b
>

A
R

0.
00
07
40

0.
00
03
10

S
W

-
S
-
st
at

11
.1
0

12
.6
5

P
ro
b
>

S
W

0.
00
08
65

0.
00
03
76

N
ot
es
:
co
e�

ci
en
ts
ar
e
es
ti
m
at
ed

us
in
g
a
m
un

ic
ip
al
it
y-
by
-y
ea
r
pa
ne
l
da
ta

se
t
co
ve
ri
ng

th
e
20
06

th
ro
ug
h
20
11

p
er
io
d.

T
he

sa
m
pl
e

in
cl
ud

es
al
lA

m
az
on

B
io
m
e
m
un

ic
ip
al
it
ie
s
th
at

ex
hi
bi
te
d
va
ri
at
io
n
in
fo
re
st
co
ve
r
du

ri
ng

th
e
sa
m
pl
e
p
er
io
d
an
d
fo
r
w
hi
ch

da
ta

w
er
e

av
ai
la
bl
e.

A
ll
re
gr
es
si
on
s
ar
e
ba
se
d
on

ou
r
pr
ef
er
re
d
sp
ec
i�
ca
ti
on

(T
ab
le
4,

P
an
el
A
,
co
lu
m
n
2)
.
A
ll
sp
ec
i�
ca
ti
on
s
ar
e
es
ti
m
at
ed

us
in
g
2S
L
S,

th
e
no
rm

al
iz
ed

an
nu
al

m
un

ic
ip
al

de
fo
re
st
at
io
n
in
cr
em

en
t
as

de
p
en
de
nt

va
ri
ab
le
,
an
d
D
E
T
E
R

cl
ou
d
co
ve
ra
ge

as
an

in
st
ru
m
en
t
fo
r
th
e
nu
m
b
er

of
�o
ra
-r
el
at
ed

�n
es
.
A
ll
sp
ec
i�
ca
ti
on
s
in
cl
ud

e
co
nt
ro
ls
fo
r
la
gg
ed

ra
in
fa
ll,

la
gg
ed

te
m
p
er
at
ur
e,

P
R
O
D
E
S
cl
ou
d
co
ve
ra
ge
,
P
R
O
D
E
S
no
n-
ob
se
rv
ab
le
ar
ea
s,
ag
ri
cu
lt
ur
al
co
m
m
od
it
y
pr
ic
es
,
an
d
m
un

ic
ip
al
it
y
an
d
ye
ar

�x
ed

e�
ec
ts
.

C
ol
um

ns
1
an
d
2
re
fe
r,
re
sp
ec
ti
ve
ly
,
to

�r
st
-
an
d
se
co
nd

-s
ta
ge

re
gr
es
si
on
s
us
in
g
G
P
C
C
pr
ec
ip
it
at
io
n
da
ta
,
w
hi
le
co
lu
m
ns

3
an
d

4
re
fe
r
to

�r
st
-
an
d
se
co
nd

-s
ta
ge

re
gr
es
si
on
s
us
in
g
E
R
A
P
ro
je
ct

pr
ec
ip
it
at
io
n
da
ta
.
R
ob
us
t
st
an
da
rd

er
ro
rs

ar
e
cl
us
te
re
d
at

th
e

m
un

ic
ip
al
it
y
le
ve
l.
Si
gn
i�
ca
nc
e:

**
*
p<

0.
01
,
**

p<
0.
05
,
*
p<

0.
10
.

46



Table 11: The E�ect of Monitoring and Law Enforcement on Agricultural Production

(1) (2) (3) (4)
Agricultural Crop Agricultural Crop

GDP production GDP production

Fines, t�1 0.00421 -0.0134 0.00228 -0.00372
(0.00566) (0.0127) (0.00504) (0.00954)

Observations 1,578 2,453 1,578 2,453
Number of municipalities 526 499 526 499
Municipality and year FE Yes Yes Yes Yes
Non-price controls Yes Yes Yes Yes
Price controls No No Yes Yes

Notes: coe�cients are estimated using a municipality-by-year panel data set covering the
2006 through 2011 period. The sample includes all Amazon Biome municipalities that
exhibited variation in forest cover during the sample period and for which data were
available. All regressions are based on our preferred speci�cation (Table 4, Panel A,
column 2). All speci�cations are estimated using 2SLS and DETER cloud coverage as
an instrument for the number of �ora-related �nes. The dependent variable in column 1
is agricultural GDP; in column (2) it is replaced by crop revenues. The lagged number
of �nes is instrumented by lagged DETER cloud coverage in all speci�cations. All
speci�cations include controls for rainfall, temperature, PRODES cloud coverage, PRODES
non-observable areas, and municipality and year �xed e�ects, but only columns 3 and 4
include controls for agricultural commodity prices. Robust standard errors are clustered at
the municipality level. Signi�cance: *** p<0.01, ** p<0.05, * p<0.10.
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