Markets designs for low-carbon, low-cost electricity systems

IRENA - Innovation week

David Nelson Climate Policy Initiative

September 2018

Email:

David.Nelson@cpisf.org

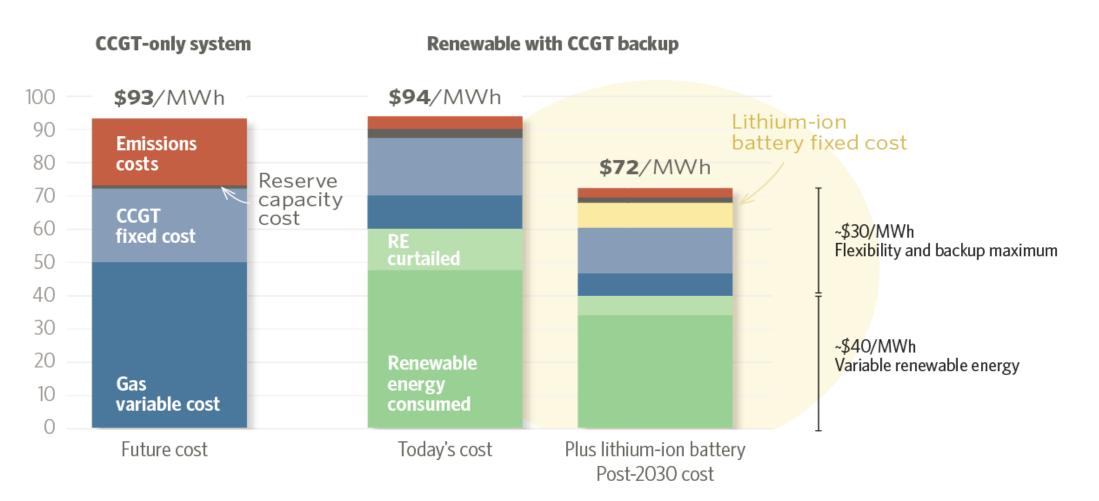
BRAZIL CHINA EUROPE INDIA INDONESIA UNITED STATES

19 Hatfields London, SE1 8DJ United Kingdom climatepolicyinitiative.org The economics or electricity markets are changing due to new technology and carbon constraints

We need to develop and incentivize different sources of flexibility – batteries, demand management, flexible generation – while keeping finance costs low, to benefit from these new economics

Current approaches to electricity market design solve only a part of the problem, while creating new problems

A low cost and effective way forward would combine parts of different electricity market concepts and tailor them to the technical and financial characteristics of low carbon and flexible technology


With the right market design, by 2030 a new electricity system based almost entirely on variable renewable energy could be cheaper than a gas based system

Changing Economics

Total cost of generation from renewables and CCGT-based systems including flexibility (with a carbon price)

Power generation and balancing cost

\$/MWh, including \$50/tonne CO₂ carbon value

The system needs to meet many flexibility requirements that grow with increased shares of low-carbon power

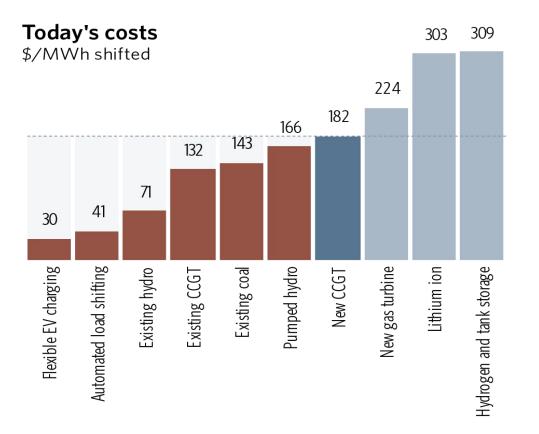
Power systems require multiple types of flexibility to manage variability and uncertainty

Type of			Increase in flexibility needed with growth of low-carbon power					
flexibility		Renewables-based Nuclear		Fossil fuels with CCS				
Real-time operations	<1 min	Spinning and load-following	Low to moderate Modest increases in forecast error with more variable	Low Low demand forecast errors	Low Low demand forecast errors			
	5 min 15 min	Short-term reserve	generation					
Scheduling and		Ramping	Moderate to high Daily patterns (eg, sunset) lead to substantial ramping needs	Low to moderate Baseload nuclear has limited ramping capability	Low to moderate Baseload fossil fuels with CCS has limited ramping capability			
forecasting	Day	Intraday / daily balancing	Moderate to high Misalignment between generation and load drives hourly over/under-production	Moderate to high Constant supply and variable demand creates need for daily energy shift	Moderate Following demand lowers capacity factor, and increases cost			
Planning	Season Year(s)	Interday / seasonal balancing	Moderate to high Dependent on resource mix, seasonality of renewable resource	Low to moderate Dependent on seasonality of demand and ability to operate plant seasonally	Low to moderate Following load lowers capacity factor, and increases cost substantially			
			Primary focus of this analysis					

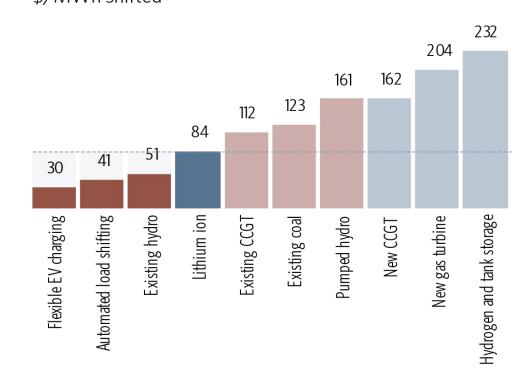
There is a wide range of potential flexibility resources...

Supply side measures	Demand side measures and demand response	Conversion to other energy forms	Direct electricity storage	Infrastructure
Operating existing plants more flexibly • Coal • Gas • Storage hydro • Run-of-river hydro Build new flexible plant • Flexible gas • Hydro • Concentrated Solar • Biomass • Tidal or wave power Renewable curtailment • Existing utility scale wind and solar • New utility scale wind and solar • New utility scale wind and solar • New utility scale wind and solar • Distributed solar curtailment • Improved forecasting Delayed Plant retirement • Coal • Gas	Industrial • Steel, aluminum • Chemicals • Pulp and paper • Cement • Manufacturing Commercial/residential • Heating, Cooling • Lighting • Water heating • Data centers • Refrigeration • Appliances & electronics Water and waste • Pumping • Desalination Real time pricing and behavioral response • By sector Automation/Direct control • Consumer aggregation • Other by sector	Heat and thermal inertia • Storage Heating • Storage Cooling • CHP and district heating Transport • Light vehicle charging • Fleet LV charging • Bus and rail Hydrogen production and similar • Hydrogen production and storage • Synthetic fuels • Fertiliser Other industrial products • Production and storage of chemicals • Steel • Cement • Etc.	Batteries • Lithium ion • Lead Acid • Zinc Bromine flow • Other Flow batteries • Lithium Air • Solid State • Aqueous saltwater Flywheels Supercapacitors Pumped storage hydro • Pure pumped storage • Mixed pump-reservoir storage Compressed air energy storage	Existing infrastructure • Improved balancing and control New transmission • Intraregional reinforcement • Interconnection and regional expansion Transmission smart grid technologies • SCADA, etc New distribution • Reinforcement • Active transmission elements (capacitors, management systems, etc.) Distribution smart grid technologies • Control systems and automation

O CLIMATE POLICY INITIATIVE

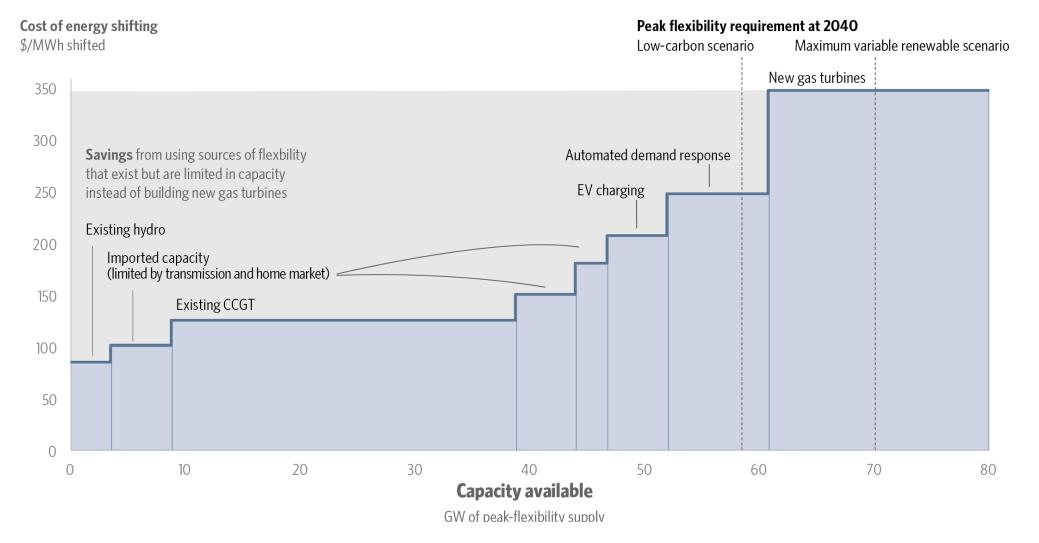

Market design for low carbon electricity systems

Developing a range of flexibility options will lower the cost of a renewable energy based **system further...**


On a typical day, flexible loads and existing resources are the most cost-effective options today for daily shifting, but future declines in lithium ion costs will yield cheaper alternatives

Cost of daily shifting (30% capacity factor)

Not scalable resources
 Cost savings using existing or limited resources


Developing

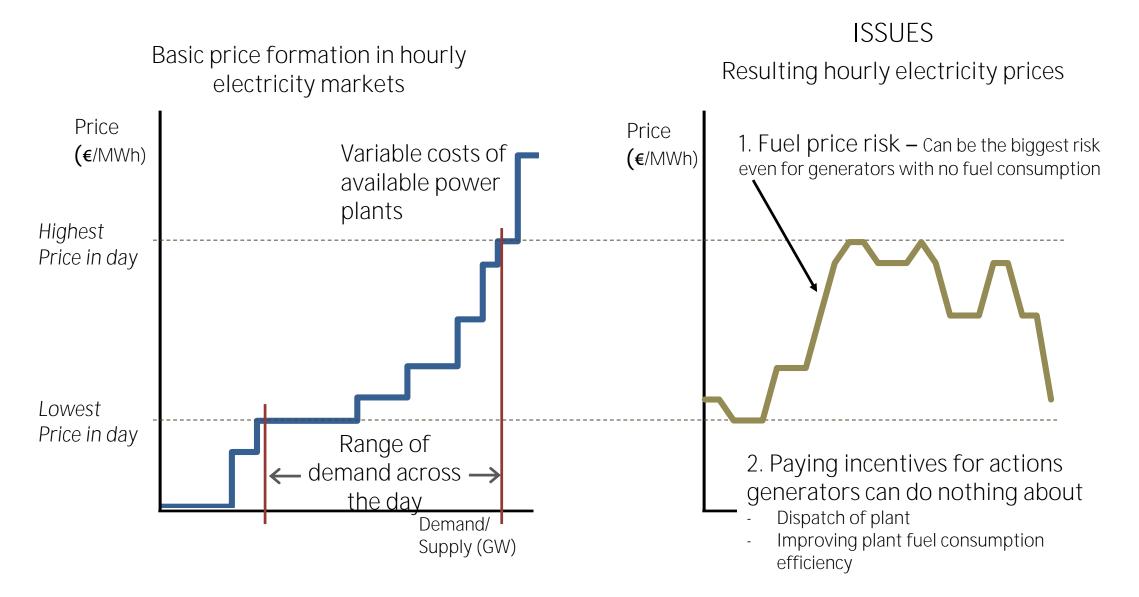
Flexibility

As will optimizing the use of existing flexible capacity, including existing hydroelectric capacity and demand response potential

Developing Flexibility

Using the lowest-cost peak daily shifting options Illustrative cost and supply of California peak daily shifting options in 2040

Lower cost options


Default option: highly scalable technology with lowest cost

Higher cost options

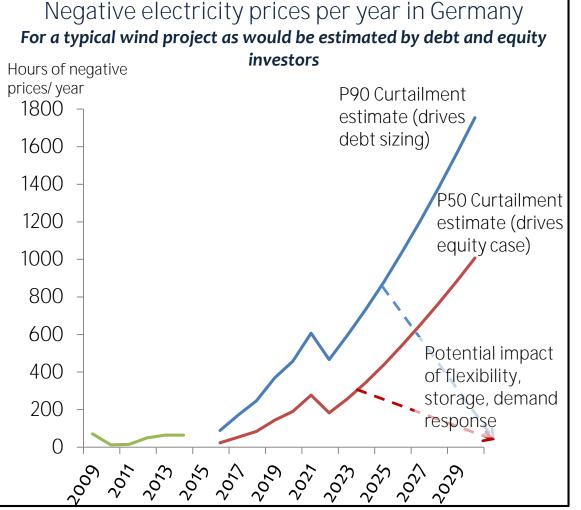
Not analysed/not an option

	Short-t reserve			mping and lancing		mping and Ilancing	Seasonal balancing
Flexibility options	Today	Future	Today	Future	Today	Future	Future
Supply-side							
New gas turbine							
Existing coal plant							
New CCGT							
Existing CCGT/GT							
Existing reservoir hydro							
Demand-side							
EV charging							
Industrial load curtailment							
Industrial load shifting							
Automated load shifting							
Energy conversion							
Hydrogen electrolysis							
Energy storage							
Lithium ion battery							
New pumped hydro							
Infrastructure							
Transmission interconnection							

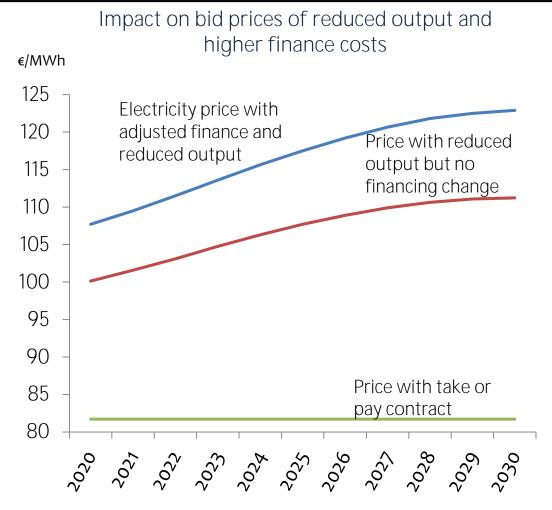
Existing electricity market designs create risks where they do not need to be, and in so doing raise the cost of finance and energy significantly

When renewables or other zero marginal cost generation become major sources, further weaknesses develop

Electricity supply curve with nuclear and renewables at zero marginal price



Resulting hourly electricity prices


- 3. Zero and negative average wholesale prices
- 4. Perception of subsidies increase
 - The more renewable energy is built, the more apparent subsidies could rise

The curtailment debate shows how this market failure could increase system costs and make renewable energy uncompetitive

The number of hours with negative electricity prices in Germany will rise rapidly with the current market structure, unless flexibility is increased markedly

If renewable electricity producers are forced to curtail with no compensation when prices are negative, costs will rise as a result of reduced output and higher finance costs due to risk

Source: CPI Analysis (see Policy and Investment in German Renewable Energy (2016)

A two market design – separating fixed energy supply and flexibly delivery – can balance finance costs, incentives, and risks, leading to lower costs

Objectives

Match risks and incentives to timeframe when decisions are made

- For infrastructure this is typically at final investment decision
- Flexibility operators need continual and shifting incentives

Match risk profile to underlying economics and the appropriate, low-cost investors.

- For infrastructure, typically long-term investors with lower risk tolerance such as pension funds and insurance
- Flexibility investors can respond to greater risk

Target technologies/Services: High fixed cost, low variable cost infrastructure such as renewable energy, nuclear, CCS and transmission and distribution capacity investment

Energy Market Long term contract and auction based

Provide incentives covering:

- Each type of flexibility, including locational delivery and consumption of energy
- Efficient dispatch of available, existing capacity of flexible resources
- Development of new capacity
- De-risking of technology development

Target technologies/Services: Flexible resources including: fossil and hydro power plants, storage, demand response, transmission and distribution capacity allocation

Delivery Market Short-term marginal price based, but with separate mechanisms for capacity and technology development and some ancillary services Redefining a wholesale market to reflect the risks and decision making timing of new energy sources could follow the model already used in Brazil

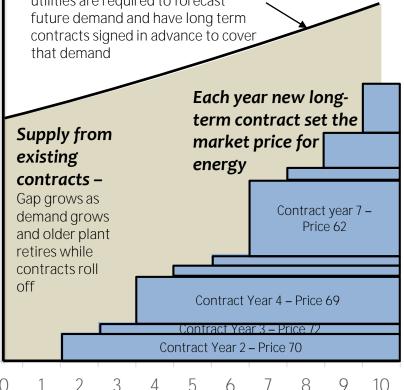
Energy Market

A wholesale market built around:

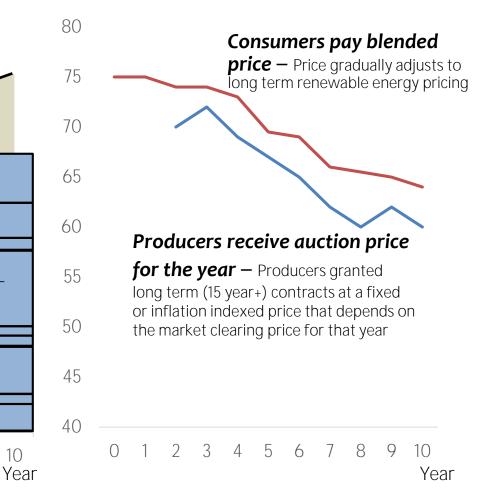
- Annual or biannual auctions offering:
- Long term contracts for energy supply, where:
- Pricing is independent of when, or where, the energy is taken.*

This market would:

- Match supply and demand and create a market for secure, long term, energy purchase contracts
- Provide investor security to minimize finance costs.

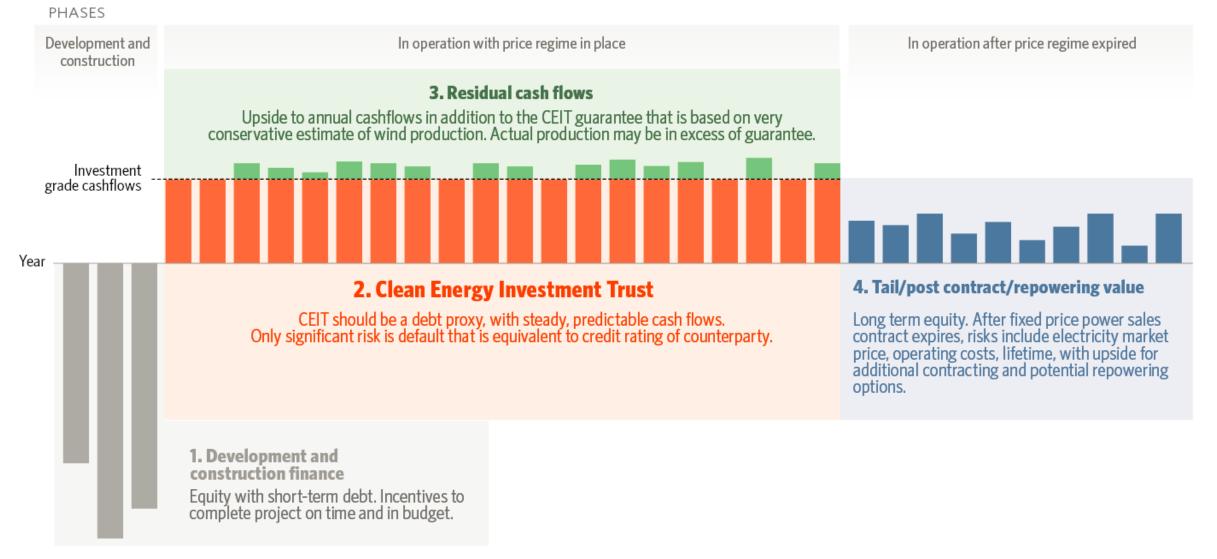

Significantly, the energy market becomes the benchmark energy price.

* Within a delivery year

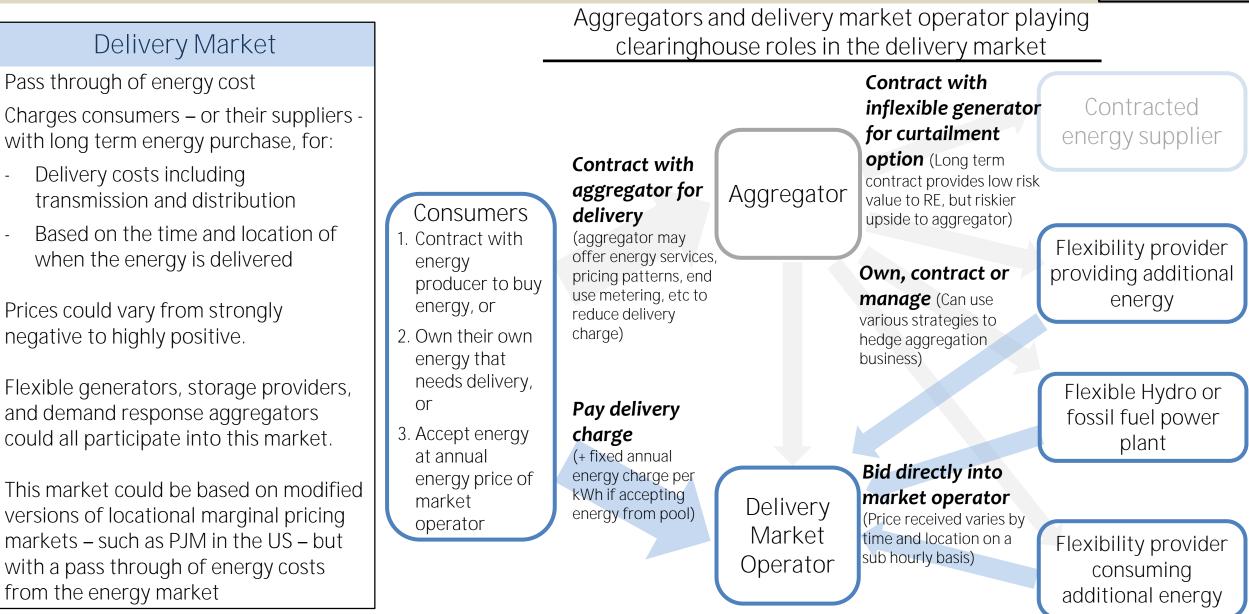

Example: Brazillian new energy markets

Annual auctions to meet demand in auctions

Forecast demand from buyers in contract market – Distribution utilities are required to forecast



Consumers and producers receive energy prices based on that auction

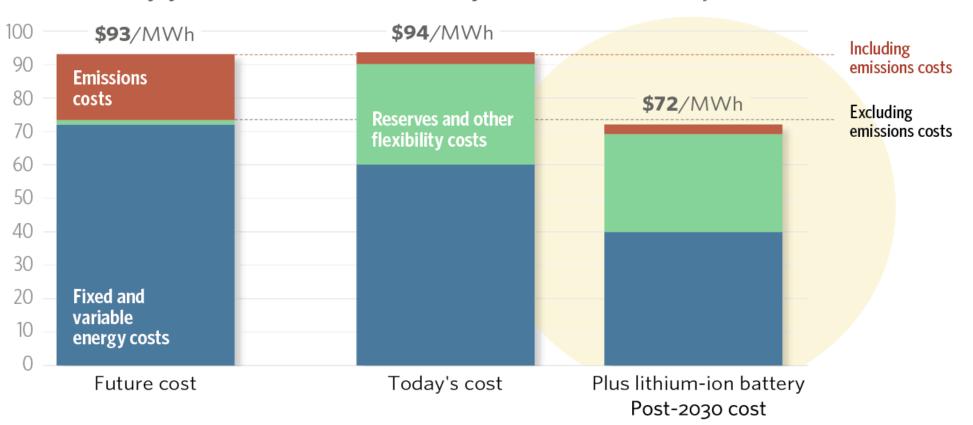

New financial structures can build off of appropriate market designs and reduce costs per kWh a further 15-20 percent – Example of the clean energy investment trust

The clean energy investment trust

Delivery markets can adapt current locational marginal pricing electricity market models, but with some key differences

A way forward

Backup


With the right market design, by 2030 a new electricity system based almost entirely on variable renewable energy could be cheaper than a gas based system

Total cost of generation from renewable and natural gas-based systems including flexibility

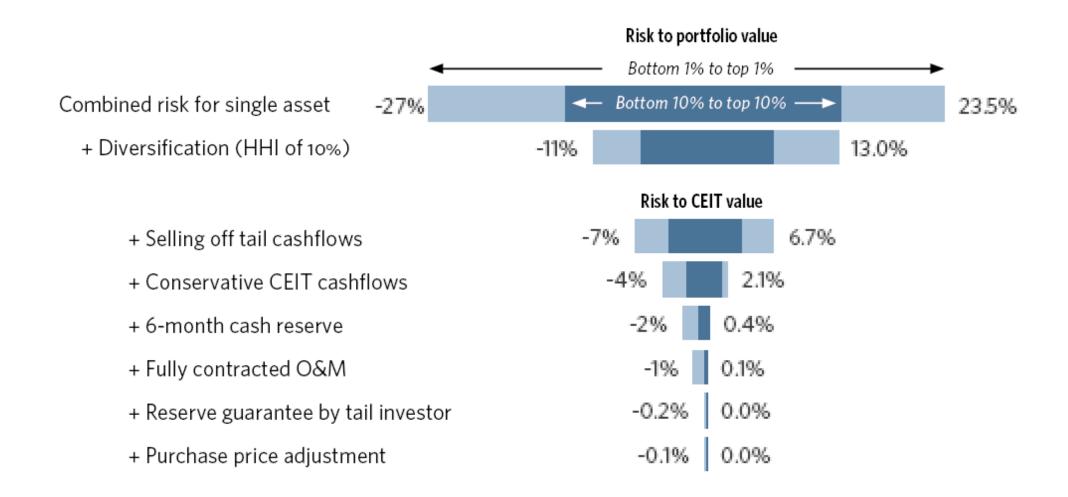
Power generation and balancing cost

\$/MWh, including \$50/tonne CO₂ carbon value


CCGT-only system

Mostly renewable with CCGT backup

In our example, we based flexibility costs German load shape and renewable energy generation profiles


Daily demand versus renewable energy production profile

While our analysis was based on "default" technologies, we also assessed a range of technologies and matched them against the various flexibility needs

Degree of technical fit High Medium-high	Spinning/	Short-		Load		Location	Location
Low-medium Low	load following	term reserve	Ramp-up capacity	shifting (day-night)	Seasonal shifting	flexibility - Bulk.	flexibility - Distrib.
Supply-side measures							
Operating existing fossil plant more flexibly							
Build new flexible plant							
Renewable energy curtailment							
Delayed plant retirement							
Demand-side measures							
Industrial demand response							
Commercial/residential demand response							
Water and waste							
Real-time pricing							
Behavioural response							
Automation and direct control							
Conversion to other forms of energy							
Electric storage heating and cooling							
Transport (electric vehicle charging)							
Hydrogen production							
Other industrial products							
Direct electricity storage							
Batteries, flywheels, supercapacitors							
Compressed air energy storage							
Pumped storage hydro							
Infrastructure							
Existing transmission and expansion							
New interconnectors							
Distribution expansion							
Smart grid technologies							

Careful financial engineering alongside PPAs or the right market design can allow CEITs to achieve investment grade security without equity tranches

Policymakers should set ambitious low-carbon targets and develop flexibility solutions through technology support, market design, industry structure and long-term planning

What policymakers should think about
 Feel free to set ambitious renewable energy targets to meet their low-carbon objectives. Focus on optimising the costs of today's flexibility options, while setting policy that will deliver increased flexibility capacity in time to meet targets for decarbonising the power sector at the lowest possible cost.
 Promote the development and cost reduction of several technologies and flexibility resources, while creating markets and policy for cost-effective integration of these resources as they develop. Create solutions that can contribute to delivering the needed flexibility at a competitive cost include: Using existing generation capacity differently; increasing demand side flexibility; increasing and optimizing new electrification; restructuring transmission and distribution; developing new roles for batteries; and building some new gas turbines as additional support.
 Focus planning and policy development on the transition path to a much higher variable renewable energy system, while markets need to be configured to get the best output, lowest cost and lowest risk from both renewable energy and the evolving flexibility resources. Design markets with long term signals for investment in the transition; better signals to consumers; markets that differentiate between the supply of energy and flexibility; mechanisms that balance sources of renewable energy to reduce flexibility needs; and process and price signals to improve regional coordination.
 Create markets and policy that incentivise long-term innovation and balance this innovation against near-term objectives. For example, there is a continued role for existing fossil fuel generation to ease the transition, while innovation policy and long-term planning is needed to access some of the lowest cost future resources.

Email: David.Nelson@cpisf.org

BRAZIL CHINA **EUROPE** INDIA INDONESIA UNITED STATES

22 Long Acre London, WC2E 9LY United Kingdom climatepolicyinitiative.org